A central limit theorem for conditionally centred random fields with an application to Markov fields

被引:12
作者
Comets, F
Janzura, M
机构
[1] Univ Paris 07, F-75251 Paris 05, France
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, CZ-18208 Prague, Czech Republic
关键词
central limit theorem; Markov random fields; conditional centring;
D O I
10.1017/S0021900200016260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a central limit theorem for conditionally centred random fields, under a moment condition and strict positivity of the empirical variance per observation. We use a random normalization, which fits non-stationary situations. The theorem applies directly to Markov random fields, including the cases of phase transition and lack of stationarity. One consequence is the asymptotic normality of the maximum pseudo-likelihood estimator for Markov fields in complete generality.
引用
收藏
页码:608 / 621
页数:14
相关论文
共 18 条
[1]  
ASAWA IV, 1983, LECT NOTES STAT, V17
[2]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[3]   ON CONSISTENCY OF A CLASS OF ESTIMATORS FOR EXPONENTIAL-FAMILIES OF MARKOV RANDOM-FIELDS ON THE LATTICE [J].
COMETS, F .
ANNALS OF STATISTICS, 1992, 20 (01) :455-468
[4]   CENTRAL LIMIT-THEOREMS FOR ASSOCIATED RANDOM-VARIABLES AND THE PERCOLATION MODEL [J].
COX, JT ;
GRIMMETT, G .
ANNALS OF PROBABILITY, 1984, 12 (02) :514-528
[5]  
Dobrushin R. L., 1974, TEOR MAT FIZ, V20, P223
[6]  
Doukhan P., 1994, Mixing: Properties and Examples
[7]  
Ellis R., 2006, ENTROPY LARGE DEVIAT
[8]  
Georgii H.-O., 1988, Gibbs Measures and Phase Transitions
[9]   LARGE DEVIATIONS AND MAXIMUM-ENTROPY PRINCIPLE FOR INTERACTING RANDOM-FIELDS ON Z(D) [J].
GEORGII, HO .
ANNALS OF PROBABILITY, 1993, 21 (04) :1845-1875
[10]   LOCAL LIMIT-THEOREMS FOR SUMS OF FINITE-RANGE POTENTIALS OF A GIBBSIAN RANDOM FIELD [J].
GOTZE, F ;
HIPP, C .
ANNALS OF PROBABILITY, 1990, 18 (02) :810-828