p-adic families of Siegel modular cuspforms

被引:36
作者
Andreatta, Fabrizio [1 ]
Iovita, Adrian [2 ,3 ]
Pilloni, Vincent [4 ]
机构
[1] Univ Statale Milano, Milan, Italy
[2] Concordia Univ, Montreal, PQ, Canada
[3] Univ Padua, Padua, Italy
[4] CNRS, Ecole Normale Super, Charge Rech Math, Lyon, France
关键词
FORMS; REPRESENTATIONS; FILTRATION; VARIETIES; SHEAVES;
D O I
10.4007/annals.2015.181.2.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and g >= 2 an integer. We prove that a finite slope Siegel cuspidal eigenform of genus g can be p-adically deformed over the g-dimensional weight space. The proof of this theorem relies on the construction of a family of sheaves of locally analytic overconvergent modular forms.
引用
收藏
页码:623 / 697
页数:75
相关论文
共 42 条
[11]  
Arthur J, 2004, CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, P65
[12]   p-adic modular forms of non-integral weight over Shimura curves [J].
Brasca, Riccardo .
COMPOSITIO MATHEMATICA, 2013, 149 (01) :32-62
[13]  
Buzzard K, 2001, DUKE MATH J, V109, P283
[14]  
Buzzard K., 2007, LONDON MATH SOC LECT, V320, P59
[15]   Correspondence of the Jacquet-Langlands p-adic forms [J].
Chenevier, G .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :161-194
[16]  
Chenevier G, 2011, ANN SCI ECOLE NORM S, V44, P963
[17]  
Coleman R.F., 1996, Galois Representations in Arithmetic Algebraic Geometry, V254, P1
[18]   P-adic Banach spaces and families of modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :417-479
[19]   Classical and overconvergent modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :215-241
[20]  
Cox D., 2011, TORIC VARIETIES, DOI DOI 10.1090/GSM/124