The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming

被引:75
作者
Eng, C. H. [1 ]
Abraham, R. T. [1 ]
机构
[1] Pfizer Oncol Res Unit, Pearl River, NY 10965 USA
关键词
autophagy; cancer metabolism; glutaminolysis; glycolysis; TUMOR-CELL SURVIVAL; FATTY-ACID SYNTHASE; KAPPA-B ACTIVATION; SIGNALING PATHWAYS; ENERGY-METABOLISM; NEURODEGENERATIVE DISEASES; REGULATING AUTOPHAGY; GLUTAMINE-METABOLISM; HUNTINGTONS-DISEASE; AEROBIC GLYCOLYSIS;
D O I
10.1038/onc.2011.220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tumorigenesis is often accompanied by metabolic changes that favor rapid energy production and increased biosynthetic capabilities. These metabolic adaptations promote the survival and proliferation of tumor cells, and in conjunction with the hypoxic and metabolically challenged tumor microenvironment, influence autophagic activity. Autophagy is a catabolic process that allows cellular macromolecules to be broken down and re-utilized as metabolic precursors. Stimulation of autophagy promotes the survival of tumor cells under stressful metabolic and environmental conditions, and counters the potentially deleterious effects of mitochondrial dysfunction and the ROS that these organelles generate. However, inhibition of autophagy has also been reported to fuel tumorigenesis. In spite of the advances in our understanding of the relationship between autophagy and tumorigenesis, it remains unclear whether the therapeutic approaches targeting autophagy should aim to increase or decrease autophagic flux in tumor tissues in human patients. Here, we review how metabolic reprogramming influences autophagic activity in tumors, and discuss how inhibition of autophagy might be exploited to target tumor cells that show altered metabolism. Oncogene (2011) 30, 4687-4696; doi: 10.1038/onc. 2011.220; published online 13 June 2011
引用
收藏
页码:4687 / 4696
页数:10
相关论文
共 107 条
[1]  
Abraham RT, 2008, EXPERT OPIN THER TAR, V12, P209, DOI [10.1517/14728222.12.2.209, 10.1517/14728222.12.2.209 ]
[2]   Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21 [J].
Aita, VM ;
Liang, XH ;
Murty, VVVS ;
Pincus, DL ;
Yu, WP ;
Cayanis, E ;
Kalachikov, S ;
Gilliam, TC ;
Levine, B .
GENOMICS, 1999, 59 (01) :59-65
[3]   ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS [J].
Alexander, Angela ;
Cai, Sheng-Li ;
Kim, Jinhee ;
Nanez, Adrian ;
Sahin, Mustafa ;
MacLean, Kirsteen H. ;
Inoki, Ken ;
Guan, Kun-Liang ;
Shen, Jianjun ;
Person, Maria D. ;
Kusewitt, Donna ;
Mills, Gordon B. ;
Kastan, Michael B. ;
Walker, Cheryl Lyn .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4153-4158
[4]   Principles and Current Strategies for Targeting Autophagy for Cancer Treatment [J].
Amaravadi, Ravi K. ;
Lippincott-Schwartz, Jennifer ;
Yin, Xiao-Ming ;
Weiss, William A. ;
Takebe, Naoko ;
Timmer, William ;
DiPaola, Robert S. ;
Lotze, Michael T. ;
White, Eileen .
CLINICAL CANCER RESEARCH, 2011, 17 (04) :654-666
[5]   The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway [J].
Arico, S ;
Petiot, A ;
Bauvy, C ;
Dubbelhuis, PF ;
Meijer, AJ ;
Codogno, P ;
Ogier-Denis, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35243-35246
[6]   MYC Activity Mitigates Response to Rapamycin in Prostate Cancer through Eukaryotic Initiation Factor 4E-Binding Protein 1-Mediated Inhibition of Autophagy [J].
Balakumaran, Bala S. ;
Porrello, Alessandro ;
Hsu, David S. ;
Glover, Wayne ;
Foye, Adam ;
Leung, Janet Y. ;
Sullivan, Beth A. ;
Hahn, William C. ;
Loda, Massimo ;
Febbo, Phillip G. .
CANCER RESEARCH, 2009, 69 (19) :7803-7810
[7]   Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains [J].
Bellot, Gregory ;
Garcia-Medina, Raquel ;
Gounon, Pierre ;
Chiche, Johanna ;
Roux, Daniele ;
Pouyssegur, Jacques ;
Mazure, Nathalie M. .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (10) :2570-2581
[8]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[9]   Modulation of intracellular ROS levels by TIGAR controls autophagy [J].
Bensaad, Karim ;
Cheung, Eric C. ;
Vousden, Karen H. .
EMBO JOURNAL, 2009, 28 (19) :3015-3026
[10]   Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila [J].
Berry, Deborah L. ;
Baehrecke, Eric H. .
CELL, 2007, 131 (06) :1137-1148