Morita theorems for partially ordered monoids

被引:8
作者
Laan, Valdis [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50090 Tartu, Estonia
关键词
pomonoid; Morita equivalence; S-poset; Morita context; FLAT S-POSETS; SEMIGROUPS; CATEGORY;
D O I
10.3176/proc.2011.4.03
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two partially ordered monoids S and T are called Morita equivalent if the categories of right S-posets and right T-posets are Pos-equivalent as categories enriched over the category Pos of posets. We give a description of Pos-prodense biposets and prove Morita theorems I, II, and III for partially ordered monoids.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 25 条
  • [21] Planar zero divisor graphs of partially ordered sets
    Afkhami, M.
    Barati, Z.
    Khashyarmanesh, K.
    ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 27 - 35
  • [22] Axiomatizability and completeness of some classes of partially ordered polygons
    Pervukhin, M. A.
    Stepanova, A. A.
    ALGEBRA AND LOGIC, 2009, 48 (01) : 54 - 71
  • [23] On Partially Ordered Semigroups and an Abstract Set-Difference
    D. Pallaschke
    H. Przybycień
    R. Urbański
    Set-Valued Analysis, 2008, 16 : 257 - 265
  • [24] Zero-divisor graphs of partially ordered sets
    Xue, Zhanjun
    Liu, Sanyang
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 449 - 452
  • [25] The Morita-equivalence between MV-algebras and lattice-ordered abelian groups with strong unit
    Caramello, O.
    Russo, A. C.
    JOURNAL OF ALGEBRA, 2015, 422 : 752 - 787