Construction and Characterization of an Indoor Smog Chamber for Measuring the Optical and Physicochemical Properties of Aging Biomass Burning Aerosols

被引:16
作者
Smith, Damon M. [1 ]
Fiddler, Marc N. [2 ]
Sexton, Kenneth G. [3 ]
Bililign, Solomon [2 ,4 ]
机构
[1] North Carolina A&T State Univ, Appl Sci & Technol Program, Greensboro, NC 27411 USA
[2] North Carolina A&T State Univ, NOAA ISET Ctr, Greensboro, NC 27411 USA
[3] Univ North Carolina Chapel Hill, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC 27514 USA
[4] North Carolina A&T State Univ, Dept Phys, Greensboro, NC 27411 USA
基金
美国国家科学基金会;
关键词
Biomass burning aerosols; Optical properties of aerosols; Smog chamber; Single scattering albedo; Fresh and aged aerosols; SECONDARY ORGANIC AEROSOL; PHASE CHEMICAL MECHANISMS; SINGLE SCATTERING ALBEDO; RING-DOWN SPECTROSCOPY; VAPOR WALL-LOSS; LIGHT-ABSORPTION; PHOTOCHEMICAL OXIDATION; SIMULATION CHAMBER; WOOD COMBUSTION; SOA FORMATION;
D O I
10.4209/aaqr.2018.06.0243
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We describe here the construction and characterization of a new combustion-chamber system (the NCAT chamber) for studying the optical and physicochemical properties of biomass burning (BB) aerosols. This system is composed of a similar to 9 m(3) fluorinated ethylene propylene (FEP) film reactor placed in a temperature-controlled room that uses a tube furnace to combust biomass fuel samples under controlled conditions. The optical properties are measured using a cavity ring-down spectrometer and nephelometer. Aerosol number density and size classification used condensation particle counter, and differential mobility analyzer. Other analytical instruments, used include NOx, O-3, CO, and CO2 analyzers, a gas chromatograph, and particle filter samples for determining the physicochemical and morphological properties. The construction details and characterization experiments are described, including measurements of the BB particulate size distribution and deposition rate, gas wall loss rates, dilution rate, light intensity, mixing speed, temperature and humidity variations, and air purification method. The wall loss rates for NO, NO2 , and O-3 were found to be (7.40 +/- 0.01) x 10(-4), (3.47 +/- 0.01) x 10(-4), and (5.90 +/- 0.08) x 10(-4) min(-1), respectively. The NO2 photolysis rate constant was 0.165 +/- 0.005 min(-1) , which corresponds to a flux of (7.72 +/- 0.25) x 10(17) photons nm cm(-2) s (-1) for 296.0-516.8 nm, and the particle deposition rate was (9.46 +/- 0.18) x 10(-3) min(-1) for 100 nm mobility diameter BB particles from pine. Preliminary results of the single scattering albedo of fresh and aged BB aerosols are also reported.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 76 条
[1]   Evolution of trace gases and particles emitted by a chaparral fire in California [J].
Akagi, S. K. ;
Craven, J. S. ;
Taylor, J. W. ;
McMeeking, G. R. ;
Yokelson, R. J. ;
Burling, I. R. ;
Urbanski, S. P. ;
Wold, C. E. ;
Seinfeld, J. H. ;
Coe, H. ;
Alvarado, M. J. ;
Weise, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (03) :1397-1421
[2]   DESIGN AND CHARACTERIZATION OF THE EVACUABLE AND BAKABLE PHOTO-CHEMICAL SMOG CHAMBER [J].
AKIMOTO, H ;
HOSHINO, M ;
INOUE, G ;
SAKAMAKI, F ;
WASHIDA, N ;
OKUDA, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1979, 13 (04) :471-475
[3]  
Allen SK, 2013, SCIENCE
[4]   Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition [J].
Andreae, MO ;
Andreae, TW ;
Annegarn, H ;
Beer, J ;
Cachier, H ;
le Canut, P ;
Elbert, W ;
Maenhaut, W ;
Salma, I ;
Wienhold, FG ;
Zenker, T .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D24) :32119-32128
[5]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[6]   Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments [J].
Bian, Q. ;
May, A. A. ;
Kreidenweis, S. M. ;
Pierce, J. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (19) :11027-11045
[7]   Characterization of a Smog Chamber for Studying Formation and Physicochemical Properties of Secondary Organic Aerosol [J].
Bin Babar, Zaeem ;
Park, Jun-Hyun ;
Kang, Jia ;
Lim, Ho-Jin .
AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (12) :3102-3113
[8]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[9]   Light absorption by carbonaceous particles: An investigative review [J].
Bond, TC ;
Bergstrom, RW .
AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (01) :27-67
[10]   Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition [J].
Bruns, E. A. ;
El Haddad, I. ;
Keller, A. ;
Klein, F. ;
Kumar, N. K. ;
Pieber, S. M. ;
Corbin, J. C. ;
Slowik, J. G. ;
Brune, W. H. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (06) :2315-2332