Existence and nonexistence of global solutions for u(t)=Delta u+a(x)u(p) in R(d)

被引:129
作者
Pinsky, RG
机构
[1] Department of Mathematics, Technion-Israel Inst. of Technology
关键词
D O I
10.1006/jdeq.1996.3196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study nonnegative solutions of the equation u(t) = Delta u + a(x) u(p) in R(d), t > 0, under the assumption that a(x) not greater than or equal to 0 is on the order \x\(m), for m is an element of (-2,infinity), or that 0 not less than or equal to a(x) less than or equal to C\x\(-2). Extending the classical result of Fujita and more recent results of Bandle and Levine and of Levine and Meier, we find a critical exponent p* = p*(m,d) such that if 1 < p less than or equal to p*, then there exist no solutions that are global in time, while if p > p*, then there exist both global and nonglobal solutions. (C) 1997 Academic Press
引用
收藏
页码:152 / 177
页数:26
相关论文
共 11 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL-SOLUTIONS OF REACTION-DIFFUSION EQUATIONS IN SECTORIAL DOMAINS [J].
BANDLE, C ;
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :595-622
[4]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[5]  
Fujita H., 1970, P S PURE MATH, V28, P105
[6]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[7]   GROWING UP PROBLEM FOR SEMILINEAR HEAT EQUATIONS [J].
KOBAYASHI, K ;
SIRAO, T ;
TANAKA, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1977, 29 (03) :407-424
[8]   THE VALUE OF THE CRITICAL EXPONENT FOR REACTION-DIFFUSION EQUATIONS IN CONES [J].
LEVINE, HA ;
MEIER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 109 (01) :73-80
[9]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[10]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]