Post-Newtonian approximation of the Vlasov-Nordstrom system

被引:3
作者
Bauer, S [1 ]
机构
[1] Univ Duisburg Gesamthsch, D-45117 Essen, Germany
关键词
classical limit; Darwin system; Vlasov-Nordstrom system; 1.5 post-Newtonian approximation;
D O I
10.1081/PDE-200064434
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Nordstrom-Vlasov system, which describes the dynamics of a self-gravitating ensemble of collisionless particles in the framework of the Nordstrom scalar theory of gravitation. If the speed of light c is considered as a parameter, it is known that in the Newtonian limit c -> infinity the Vlasov-Poisson system is obtained. In this paper we determine a higher approximation and establish a pointwise error estimate of order O(c(-4)). Such an approximation is usually called a 1.5 post-Newtonian approximation.
引用
收藏
页码:957 / 985
页数:29
相关论文
共 26 条
[1]   Global classical solutions to the spherically symmetric Nordstrom-Vlasov system [J].
Andreasson, H ;
Calogero, S ;
Rein, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :533-539
[2]  
[Anonymous], 2004, Communications in Mathematical Sciences
[3]   The Darwin approximation of the relativistic Vlasov-Maxwell system [J].
Bauer, S ;
Kunze, M .
ANNALES HENRI POINCARE, 2005, 6 (02) :283-308
[4]   Global weak solutions to the Nordstrom-Vlasov system [J].
Calogero, S ;
Rein, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (02) :323-338
[5]  
CALOGERO S, 2003, COMMUN PART DIFF EQ, V28, P1
[6]  
FRIEDRICH S, GLOBAL SMALL SOLUTIO
[7]  
GLASSEY RT, 1986, ARCH RATION MECH AN, V92, P59
[8]  
Glassey RT., 1996, CAUCHY PROBLEM KINET, DOI 10.1137/1.9781611971477
[9]   ON THE ASYMPTOTIC GROWTH OF THE SOLUTIONS OF THE VLASOV-POISSON SYSTEM [J].
HORST, E .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (02) :75-85
[10]   The Vlasov-Poisson system with radiation damping [J].
Kunze, M ;
Rendall, AD .
ANNALES HENRI POINCARE, 2001, 2 (05) :857-886