Conditional weak compactness and weak sequential completeness in vector-valued function spaces

被引:1
作者
Nowak, Marian [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2011年 / 21卷 / 1-2期
关键词
Vector-valued function spaces; Order continuous functionals; Conditional weak compactness; Vector measures; Weak sequential completeness; Weak* measurable functions; TOPOLOGIES;
D O I
10.1016/j.indag.2010.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an ideal of L-0 over a finite measure space (Omega, Sigma, mu) and let (X, parallel to . parallel to(X)) be a real Banach space. Let E(X) be the subspace of L-0(X) of mu-equivalence classes of all strongly Sigma-measurable functions f :Omega -> X consisting of all those f is an element of L-0(X) for which the scalar function parallel to f(.)parallel to(x) belongs to E. Let E(X)(n)(similar to) stand for the order continuous dual of E(X), i.e., E(X)(n)(similar to) consists of all linear functionals F on E(X) such that for a net (f(alpha)) in E(X), parallel to f(alpha)(.)parallel to(X) ->((o)) 0 in E implies F(f(alpha)) -> 0. We derive several results concerning conditional sigma(E(X)(n)(similar to), E(X))-compactness in E(X)(n)(similar to). It is shown that the space L-infinity(X)(n)(similar to) is sigma(L-infinity(X)(n)(similar to), L-infinity(X))-sequentially complete. We obtain a characterization of relatively sigma(L-infinity(X)(n)(similar to), L-infinity(X))-sequentially compact sets in (L-infinity(X)(n)(similar to). (C) 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier BAT. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 23 条
[1]  
Aliprantis C.D., 2003, Mathematical Surveys and Monographs, V105
[2]  
[Anonymous], 1978, T MOSCOW MATH SOC
[3]  
[Anonymous], 2003, KOTHE BOCHNER FUNCTI
[4]  
[Anonymous], 1950, Modulared Semi-Ordered Linear Spaces
[5]  
[Anonymous], 2000, PUR AP M-WI
[6]  
Benabdellah H., 2001, ADV MATH EC, P1
[7]  
Bukhvalov A.V., 1975, IZV VYSS UCEB ZAVED, V11, P21
[8]  
BUKHVALOV AV, 1977, IZV VYSS UCEB ZAVED, V7, P21
[9]   WEAK COMPACTNESS IN ORDER DUAL OF A VECTOR LATTICE [J].
BURKINSHAW, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) :183-201
[10]  
Cembranos P., 1997, LECT NOTES MATH, V1676