Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries

被引:29
作者
Munao, David [2 ]
Valvo, Mario [2 ]
van Erven, Jan [2 ]
Kelder, Erik M. [2 ]
Hassoun, Jusef [1 ]
Panero, Stefania [1 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
[2] Delft Univ Technol, Dept Chem Engn, NL-2628 BL Delft, Netherlands
关键词
SINTERABLE CERAMIC POWDERS; LASER-DRIVEN REACTIONS; COMPOSITE ELECTRODES; SPRAY DEPOSITION; TIN;
D O I
10.1039/c1jm13565a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work describes the preparation and the characterization of Si-based nano-composite anodes. The samples are prepared by a unique combination of two techniques: Laser Assisted Chemical Vapor Pyrolysis and Electrospray Deposition. The former is used to synthesize the active material, while the latter is employed for the deposition of thin electrode layers onto stainless steel supports. The silicon nano-particles characterization indicates a well-defined crystalline structure and a homogeneous, spherical-like morphology. The electrochemical measurements performed using the silicon-based electrode in the lithium cell show a maximum specific capacity of the order of 1200 mA h g(-1) and a good rate capability. The initial irreversible capacity associated with this class of materials is strongly reduced by preliminary surface treatment. The morphology changes upon cycling are minimal and no extended fractures are observed for the cycled electrodes, thus finally indicating the validity of our silicon based electrode as an anode for advanced lithium-ion batteries.
引用
收藏
页码:1556 / 1561
页数:6
相关论文
共 50 条
[31]   Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries [J].
Beck, Faith R. ;
Epur, Rigved ;
Hong, Daeho ;
Manivannan, Ayyakkannu ;
Kumta, Prashant N. .
ELECTROCHIMICA ACTA, 2014, 127 :299-306
[32]   Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement [J].
Hou, Hongshuai ;
Tang, Xiaona ;
Guo, Meiqing ;
Shi, Yongqian ;
Dou, Peng ;
Xu, Xinhua .
MATERIALS LETTERS, 2014, 128 :408-411
[33]   Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries [J].
Liu, Ruiqing ;
Li, Deyu ;
Wang, Chen ;
Li, Ning ;
Li, Qing ;
Lu, Xujie ;
Spendelow, Jacob S. ;
Wu, Gang .
NANO ENERGY, 2014, 6 :73-81
[34]   Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries [J].
Choi, Jaecheol ;
Kim, Kyuman ;
Jeong, Jiseon ;
Cho, Kuk Young ;
Ryou, Myung-Hyun ;
Lee, Yong Min .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) :14851-14858
[35]   Advanced oxide and metal powders for negative electrodes in lithium-ion batteries [J].
Brousse, T ;
Crosnier, O ;
Devaux, X ;
Fragnaud, P ;
Paillard, P ;
Santos-Peña, J ;
Schleich, DM .
POWDER TECHNOLOGY, 2002, 128 (2-3) :124-130
[36]   How carboxymethylcellulose adsorption and porous active material particles diminish the adhesion of graphite-silicon anodes in lithium-ion batteries [J].
Hofmann, Katarzyna ;
Willenbacher, Norbert .
ENERGY MATERIALS, 2025, 5 (08)
[37]   Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries [J].
Xu, Yunhua ;
Zhu, Yujie ;
Liu, Yihang ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :128-133
[38]   Disproportionated Tin Oxide and Its Nanocomposite for High-Performance Lithium-Ion Battery Anodes [J].
Park, Jae-Wan ;
Park, Cheol-Min .
ENERGY TECHNOLOGY, 2015, 3 (06) :658-665
[39]   Fast lithium transport in PbTe for lithium-ion battery anodes [J].
Wood, Sean M. ;
Klavetter, Kyle C. ;
Heller, Adam ;
Mullins, C. Buddie .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7238-7243
[40]   Materials for Rechargeable Lithium-Ion Batteries [J].
Hayner, Cary M. ;
Zhao, Xin ;
Kung, Harold H. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 :445-471