Opposition based competitive grey wolf optimizer for EMG feature selection

被引:32
|
作者
Too, Jingwei [1 ]
Abdullah, Abdul Rahim [1 ]
机构
[1] Univ Tekn Malaysia Melaka, Fac Elect Engn, Durian Tunggal 76100, Melaka, Malaysia
关键词
Feature selection; Optimization; Competitive binary grey wolf optimizer; Electromyography; Classification; Opposition learning; PARTICLE SWARM OPTIMIZATION; FEATURE-EXTRACTION; ALGORITHM; CLASSIFICATION; CHANNEL;
D O I
10.1007/s12065-020-00441-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a competitive grey wolf optimizer (CGWO) to solve the feature selection problem in electromyography (EMG) pattern recognition. We model the recently established feature selection method, competitive binary grey wolf optimizer (CBGWO), into a continuous version (CGWO), which enables it to perform the search on continuous search space. Moreover, another new variant of CGWO, namely opposition based competitive grey wolf optimizer (OBCGWO), is proposed to enhance the performance of CGWO in feature selection. The proposed methods show superior results in several benchmark function tests. As for EMG feature selection, the proposed algorithms are evaluated using the EMG data acquired from the publicly access EMG database. Initially, several useful features are extracted from the EMG signals to construct the feature set. The proposed CGWO and OBCGWO are then applied to select the relevant features from the original feature set. Four state-of-the-art algorithms include particle swarm optimization, flower pollination algorithm, butterfly optimization algorithm, and CBGWO are used to examine the effectiveness of proposed methods in feature selection. The experimental results show that OBCGWO can provide optimal classification performance, which is suitable for rehabilitation and clinical applications.
引用
收藏
页码:1691 / 1705
页数:15
相关论文
共 50 条
  • [1] Opposition based competitive grey wolf optimizer for EMG feature selection
    Jingwei Too
    Abdul Rahim Abdullah
    Evolutionary Intelligence, 2021, 14 : 1691 - 1705
  • [2] A New Competitive Binary Grey Wolf Optimizer to Solve the Feature Selection Problem in EMG Signals Classification
    Too, Jingwei
    Abdullah, Abdul Rahim
    Saad, Norhashimah Mohd
    Ali, Nursabillilah Mohd
    Tee, Weihown
    COMPUTERS, 2018, 7 (04)
  • [3] Hybrid Binary Grey Wolf With Harris Hawks Optimizer for Feature Selection
    Al-Wajih, Ranya
    Abdulkadir, Said Jadid
    Aziz, Norshakirah
    Al-Tashi, Qasem
    Talpur, Noureen
    IEEE ACCESS, 2021, 9 : 31662 - 31677
  • [4] A novel feature selection framework based on grey wolf optimizer for mammogram image analysis
    Sathiyabhama, B.
    Kumar, S. Udhaya
    Jayanthi, J.
    Sathiya, T.
    Ilavarasi, A. K.
    Yuvarajan, V
    Gopikrishna, Konga
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (21): : 14583 - 14602
  • [5] A random walk Grey wolf optimizer based on dispersion factor for feature selection on chronic disease prediction
    Preeti
    Deep, Kusum
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [6] Improved Binary Grey Wolf Optimizer and Its application for feature selection
    Hu, Pei
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [7] A Feature Selection Approach Hybrid Grey Wolf and Heap-Based Optimizer Applied in Bearing Fault Diagnosis
    Lee, Chun-Yao
    Le, Truong-An
    Lin, Yu-Ting
    IEEE ACCESS, 2022, 10 : 56691 - 56705
  • [8] Unsupervised hyperspectral feature selection based on fuzzy c-means and grey wolf optimizer
    Xie, Fuding
    Lei, Cunkuan
    Li, Fangfei
    Huang, Dan
    Yang, Jun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (09) : 3344 - 3367
  • [9] An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection
    Abdel-Basset, Mohamed
    Sallam, Karam M.
    Mohamed, Reda
    Elgendi, Ibrahim
    Munasinghe, Kumudu
    Elkomy, Osama M.
    IEEE ACCESS, 2021, 9 : 139792 - 139822
  • [10] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263