Structure-Function Correlation and Dynamic Restructuring of Cu for Highly Efficient Electrochemical CO2 Conversion

被引:15
|
作者
Zhu, Chenyuan [1 ,2 ]
Zhao, Siwen [1 ,2 ]
Shi, Guoshuai [1 ,2 ]
Zhang, Liming [1 ,2 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200438, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200438, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; reduction; dynamic restructuring; electrocatalysis; electrochemistry; structure-function correlation; LOW-OVERPOTENTIAL ELECTROREDUCTION; ACTIVE-SITE MOTIFS; CARBON-DIOXIDE; OXIDATION-STATE; ELECTROCATALYTIC CONVERSION; COPPER NANOCRYSTALS; SELECTIVE FORMATION; REDUCTION; CATALYSTS; SURFACE;
D O I
10.1002/cssc.202200068
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing global demand for sustainable energy sources and emerging environmental issues have pushed the development of energy conversion and storage technologies to the forefront of chemical research. Electrochemical carbon dioxide (CO2) conversion provides an attractive approach to synthesizing fuels and chemical feedstocks using renewable energy. On the path to deploying this technology, basic and applied scientific hurdles remain. Copper, as the only metal catalyst that is capable to produce C2+ fuels from CO2 reduction (CO2R), still faces challenges in the improvement of electrosynthesis pathways for highly selective fuel production. In this regard, mechanistically understanding CO2R on Cu-based electrocatalysts, particularly identifying the structure-function correlation, is crucial. Here, a broad view of the variable structural parameters and their complex interplay in CO2R catalysis on Cu was given, with the purpose of providing deep insights and guiding the future rational design of CO2R electrocatalysts. First, this Review described the progress and recent advances in the development of well-defined nanostructured catalysts and the mechanistic understanding on the influences from a particular structure of a catalyst, such as facet, defects, morphology, oxidation state, composition, and interface. Next, the in-situ dynamic restructuring of Cu was presented. The importance of operando characterization methods to understand the catalyst structure-sensitivity was also discussed. Finally, some perspectives on the future outlook for electrochemical CO2R were offered.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Carbon-Supported Ni-Cu Bimetallic Nanoparticle Materials for Highly Efficient Electrocatalytic Conversion of CO2 to CO
    Liu, Yanzhuo
    Liu, Tianxia
    Ma, Bingzhen
    ENERGY TECHNOLOGY, 2025,
  • [22] Electrochemical CO2 Reduction: Classifying Cu Facets
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    ACS CATALYSIS, 2019, 9 (09) : 7894 - 7899
  • [23] Toward efficient catalysts for electrochemical CO2 conversion to C2 products
    Kuo, Luke
    Dinh, Cao-Thang
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
  • [24] Mesoporous Cu2O microspheres for highly efficient C2 chemicals production from CO2 electroreduction
    Zang, Haojie
    Wang, Min
    Wang, Jie
    He, Xin
    Wang, Yang
    Zhang, Lingxia
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 671 : 496 - 504
  • [25] Highly Scalable Conversion of Blood Protoporphyrin to Efficient Electrocatalyst for CO2-to-CO Conversion
    Miola, Matteo
    Li, Simin
    Hu, Xin-Ming
    Ceccato, Marcel
    Surkus, Annette-E.
    Welter, Edmund
    Pedersen, Steen U.
    Junge, Henrik
    Skrydstrup, Troels
    Beller, Matthias
    Daasbjerg, Kim
    ADVANCED MATERIALS INTERFACES, 2021, 8 (12)
  • [26] Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode
    Takatsuji, Yoshiyuki
    Nakata, Ikumi
    Morimoto, Masayuki
    Sakakura, Tatsuya
    Yamasaki, Ryota
    Haruyama, Tetsuya
    ELECTROCATALYSIS, 2019, 10 (01) : 29 - 34
  • [27] Efficient electrochemical conversion of CO2 into formic acid using colloidal NiCo@rGO catalyst
    Arsalan, Muhammad
    Ewis, Dina
    Ba-Abbad, Muneer M.
    Khaled, Mazen
    Amhamed, Abdulkarem
    El-Naas, Muftah H.
    RESULTS IN ENGINEERING, 2024, 21
  • [28] Restructuring and integrity of molecular catalysts in electrochemical CO2 reduction
    Rooney, Conor L.
    Wu, Yueshen
    Gallagher, David J.
    Wang, Hailiang
    NATURAL SCIENCES, 2022, 2 (04):
  • [29] Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol
    Su, Wanyu
    Ma, Lushan
    Cheng, Qingqing
    Wen, Ke
    Wang, Pengfei
    Hu, Weibo
    Zou, Liangliang
    Fang, Jianhui
    Yang, Hui
    JOURNAL OF CO2 UTILIZATION, 2021, 52
  • [30] Highly Selective Conversion of CO2 to CO Achieved by a Three-Dimensional Porous Silver Electrocatalyst
    Daiyan, Rahman
    Lu, Xunyu
    Ng, Yun Hau
    Amal, Rose
    CHEMISTRYSELECT, 2017, 2 (03): : 879 - 884