Magnetoresistance in Two-Component Systems

被引:77
|
作者
Alekseev, P. S. [1 ]
Dmitriev, A. P. [1 ]
Gornyi, I. V. [1 ,2 ,3 ]
Kachorovskii, V. Yu. [1 ]
Narozhny, B. N. [3 ,4 ]
Schuett, M. [5 ]
Titov, M. [6 ]
机构
[1] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[4] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia
[5] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[6] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
关键词
LINEAR MAGNETORESISTANCE; NONSATURATING MAGNETORESISTANCE; GIANT MAGNETORESISTANCE; OSCILLATIONS; RESISTANCE; CRYSTALS; MOBILITY; CURRENTS;
D O I
10.1103/PhysRevLett.114.156601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-component systems with equal concentrations of electrons and holes exhibit nonsaturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality due to recombination. The phenomenon originates in the excess quasiparticle density developing near the edges of the sample due to the compensated Hall effect. The size of the boundary region is of the order of the electron-hole recombination length that is inversely proportional to the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates over the bulk leading to linear magnetoresistance. Our results are relevant for two-and three-dimensional semimetals and narrow band semiconductors including most of the topological insulators.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Memory Effects in the Magnetoresistance of Two-Component Electron Systems
    K. S. Denisov
    K. A. Baryshnikov
    P. S. Alekseev
    JETP Letters, 2023, 118 : 123 - 129
  • [2] Memory Effects in the Magnetoresistance of Two-Component Electron Systems
    Denisov, K. S.
    Baryshnikov, K. A.
    Alekseev, P. S.
    JETP LETTERS, 2023, 118 (02) : 123 - 129
  • [3] Magnetoresistance in two-component Ag/Ni nanocompacts
    Wu, S. Y.
    Ma, Y.-R.
    Liao, M. T.
    Li, W.-H.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 2359 - 2360
  • [4] Two-component systems
    Papon, Nicolas
    Stock, Ann M.
    CURRENT BIOLOGY, 2019, 29 (15) : R724 - R725
  • [5] Conductivity of two-component systems
    deKuijper, A
    Sandor, RKJ
    Hofman, JP
    deWaal, JA
    GEOPHYSICS, 1996, 61 (01) : 162 - 168
  • [6] Flocculation with two-component systems
    Petzold, G
    Buchhammer, HM
    Lunkwitz, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 54 - COLL
  • [7] Classical Magnetoresistance of a Two-Component System Induced by Thermoelectric Effects
    Alekseev, P. S.
    Gornyi, I. V.
    Dmitriev, A. P.
    Kachorovskii, V. Yu.
    Semina, M. A.
    SEMICONDUCTORS, 2017, 51 (06) : 766 - 776
  • [8] Classical magnetoresistance of a two-component system induced by thermoelectric effects
    P. S. Alekseev
    I. V. Gornyi
    A. P. Dmitriev
    V. Yu. Kachorovskii
    M. A. Semina
    Semiconductors, 2017, 51 : 766 - 776
  • [9] Partially Neutral two-Component Systems
    Agafonov A.V.
    Physics of Particles and Nuclei Letters, 2010, 7 (7) : 487 - 489
  • [10] Two-component "inexact" pancratic systems
    Andreev, LN
    JOURNAL OF OPTICAL TECHNOLOGY, 2000, 67 (03) : 261 - 262