Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel

被引:74
作者
Gomez-Aguilar, J. F. [1 ]
机构
[1] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Integral transform operator; Fractional diffusion equation; Atangana-Baleanu fractional derivative; Anomalous diffusion; Subdiffusion; ANOMALOUS DIFFUSION; APPROXIMATION; SUBDIFFUSION; TRANSPORT; MODEL;
D O I
10.1016/j.physa.2016.08.072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, using the fractional operators with Mittag-Leffler kernel in Caputo and Riemann-Liouville sense the space-time fractional diffusion equation is modified, the fractional equation will. be examined separately; with fractional spatial derivative and fractional temporal derivative. For the study cases, the order considered is 0 < beta, gamma <= 1 respectively. In this alternative representation we introduce the appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives into the fractional diffusion equation, these parameters related to equation results in a fractal space-time geometry provide a new family of solutions for the diffusive processes. The proposed mathematical representation can be useful to understand electrochemical phenomena, propagation of energy in dissipative systems, viscoelastic materials, material heterogeneities and media with different scales. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:562 / 572
页数:11
相关论文
共 46 条
[1]  
[Anonymous], 2016, PROGR FRACT DIFFER A
[2]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
Atangana A., 2016, THERM SCI, V18
[5]  
Atangana A, 2016, CHAOS SOLITONS FRACT
[6]   New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative [J].
Atangana, Abdon ;
Alkahtanil, Badr Saad T. .
ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (01)
[8]   Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
ENTROPY, 2015, 17 (06) :4439-4453
[9]   Theory of the electrochemical impedance of anomalous diffusion [J].
Bisquert, J ;
Compte, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :112-120
[10]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201