Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas

被引:99
作者
Malone, Fionn D. [1 ]
Blunt, N. S. [2 ,3 ]
Brown, Ethan W. [4 ]
Lee, D. K. K. [1 ]
Spencer, J. S. [1 ,5 ]
Foulkes, W. M. C. [1 ]
Shepherd, James J. [1 ,6 ]
机构
[1] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[2] Univ Cambridge, Univ Chem Lab, Lensfield Rd, Cambridge CB2 1EW, England
[3] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[4] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[5] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[6] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
英国工程与自然科学研究理事会;
关键词
COLLECTIVE DESCRIPTION; COULOMB INTERACTIONS; SYSTEMS;
D O I
10.1103/PhysRevLett.117.115701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10(124) matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration pathintegral formalism disagree by up to similar to 10% at certain reduced temperatures T/T-F <= 0.5 and densities r(s) <= 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T-F >= 1 and r(s) <= 2.
引用
收藏
页数:6
相关论文
共 59 条
[21]   Frontiers of the physics of dense plasmas and planetary interiors: Experiments, theory, and applications [J].
Fortney, J. J. ;
Glenzer, S. H. ;
Koenig, M. ;
Militzer, B. ;
Saumon, D. ;
Valencia, D. .
PHYSICS OF PLASMAS, 2009, 16 (04)
[22]  
Fortov V., 2006, Physics of strongly coupled plasma, V135
[23]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83
[24]   Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions [J].
Fraser, LM ;
Foulkes, WMC ;
Rajagopal, G ;
Needs, RJ ;
Kenny, SD ;
Williamson, AJ .
PHYSICAL REVIEW B, 1996, 53 (04) :1814-1832
[25]  
Giuliani G. F., 2005, Quantum Theory of the Electron Liquid
[26]  
Graziani F. R., 2014, Frontiers and Challenges in Warm Dense Matter
[27]   Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes [J].
Groth, S. ;
Schoof, T. ;
Dornheim, T. ;
Bonitz, M. .
PHYSICAL REVIEW B, 2016, 93 (08)
[28]   Towards numerically accurate many-body perturbation theory: Short-range correlation effects [J].
Gulans, Andris .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (16)
[29]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[30]   First-principles equation-of-state table of deuterium for inertial confinement fusion applications [J].
Hu, S. X. ;
Militzer, B. ;
Goncharov, V. N. ;
Skupsky, S. .
PHYSICAL REVIEW B, 2011, 84 (22)