Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas

被引:99
作者
Malone, Fionn D. [1 ]
Blunt, N. S. [2 ,3 ]
Brown, Ethan W. [4 ]
Lee, D. K. K. [1 ]
Spencer, J. S. [1 ,5 ]
Foulkes, W. M. C. [1 ]
Shepherd, James J. [1 ,6 ]
机构
[1] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[2] Univ Cambridge, Univ Chem Lab, Lensfield Rd, Cambridge CB2 1EW, England
[3] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[4] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[5] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[6] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
英国工程与自然科学研究理事会;
关键词
COLLECTIVE DESCRIPTION; COULOMB INTERACTIONS; SYSTEMS;
D O I
10.1103/PhysRevLett.117.115701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10(124) matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration pathintegral formalism disagree by up to similar to 10% at certain reduced temperatures T/T-F <= 0.5 and densities r(s) <= 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T-F >= 1 and r(s) <= 2.
引用
收藏
页数:6
相关论文
共 59 条
[1]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[2]   Krylov-Projected Quantum Monte Carlo Method [J].
Blunt, N. S. ;
Alavi, Ali ;
Booth, George H. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[3]   Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application [J].
Blunt, N. S. ;
Smart, Simon D. ;
Kersten, J. A. F. ;
Spencer, J. S. ;
Booth, George H. ;
Alavi, Ali .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (18)
[4]   Density-matrix quantum Monte Carlo method [J].
Blunt, N. S. ;
Rogers, T. W. ;
Spencer, J. S. ;
Foulkes, W. M. C. .
PHYSICAL REVIEW B, 2014, 89 (24)
[5]   A COLLECTIVE DESCRIPTION OF ELECTRON INTERACTIONS .3. COULOMB INTERACTIONS IN A DEGENERATE ELECTRON GAS [J].
BOHM, D ;
PINES, D .
PHYSICAL REVIEW, 1953, 92 (03) :609-625
[6]   Towards an exact description of electronic wavefunctions in real solids [J].
Booth, George H. ;
Grueneis, Andreas ;
Kresse, Georg ;
Alavi, Ali .
NATURE, 2013, 493 (7432) :365-370
[7]   Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods [J].
Booth, George H. ;
Cleland, Deidre ;
Thom, Alex J. W. ;
Alavi, Ali .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (08)
[8]   Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space [J].
Booth, George H. ;
Thom, Alex J. W. ;
Alavi, Ali .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (05)
[9]  
Brown E. W., 2014, THESIS
[10]   Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature [J].
Brown, Ethan W. ;
DuBois, Jonathan L. ;
Holzmann, Markus ;
Ceperley, David M. .
PHYSICAL REVIEW B, 2013, 88 (08)