Wedderburn polynomials over division rings, I

被引:36
作者
Lam, TY [1 ]
Leroy, A
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Artois, Dept Math, F-62307 Lens, France
关键词
D O I
10.1016/S0022-4049(03)00125-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Wedderburn polynomial over a division ring K is a minimal polynomial of an algebraic subset of K. Such a polynomial is always a product of linear factors over K, although not every product of linear polynomials is a Wedderburn. polynomial. In this paper, we establish various proper-ties and characterizations of Wedderburn polynomials over K, and show that these polynomials form a complete modular lattice that is dual to the lattice of fall algebraic subsets of K. Throughout the paper, we work in the general setting of an Ore skew polynomial ring K[t, S, D], where S is an endomorphism of K and D is an S-derivation on K. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 76
页数:34
相关论文
共 29 条
[1]  
Cohn, 1995, ENCY MATH, V57
[2]  
Cohn P. M., 1985, LONDON MATH SOC MONO, V19
[3]  
Crawley P., 1973, Algebraic Theory of Lattices
[4]  
Jacobson N., 1944, B AM MATH SOC, V50, P902
[5]  
JACOBSON N, 1996, FINITE DIMENSIONAL D
[6]  
Jacobson Nathan., 1943, AM MATH SOC MATH SUR, VII
[7]  
Johnson R E., 1944, B AM MATH SOC, V50, P202, DOI DOI 10.1090/S0002-9904-1944-08112-3
[8]  
Lam T. Y., 2001, GRADUATE TEXTS MATH, V131
[9]  
Lam T. Y., 1986, Expos. Math., V4, P193
[10]  
LAM TY, 1988, NATO ADV SCI I C-MAT, V233, P153