Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers
    Liu, Wanhai
    Wang, Xiang
    Liu, Xingxia
    Yu, Changping
    Fang, Ming
    Ye, Wenhua
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [32] Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime
    Liu, Wanhai
    Chen, Yulian
    Yu, Changping
    Li, Xinliang
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [33] NONLINEAR EVOLUTION OF RAYLEIGH-TAYLOR INSTABILITY IN A RADIATION-SUPPORTED ATMOSPHERE
    Jiang, Yan-Fei
    Davis, Shane W.
    Stone, James M.
    ASTROPHYSICAL JOURNAL, 2013, 763 (02)
  • [34] Effect of long-wavelength perturbations in nonlinear evolution of the ablative Rayleigh-Taylor mixing
    Zhao, K. G.
    Li, Z. Y.
    Wang, L. F.
    Xue, C.
    Wu, J. F.
    Xiao, Z. L.
    Ye, W. H.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2023, 30 (06)
  • [35] Experiment progress of ablative Rayleigh-Taylor instability based on X-ray framing camera
    Cao Zhu-Rong
    Miao Wen-Yong
    Dong Jian-Jun
    Yuan Yong-Teng
    Yang Zheng-Hua
    Yuan Zheng
    Zhang Hai-Ying
    Liu Shen-Ye
    Jiang Shao-Eng
    Ding Yong-Kun
    ACTA PHYSICA SINICA, 2012, 61 (07)
  • [36] Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh-Taylor instability experiments on the National Ignition Facility
    Casner, A.
    Smalyuk, V.
    Masse, L.
    Moore, A.
    Delorme, B.
    Martinez, D.
    Igumenshev, I.
    Jacquet, L.
    Liberatore, S.
    Seugling, R.
    Chicanne, C.
    Park, H. S.
    Remington, B. A.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (01) : 32 - 37
  • [37] Dynamic stabilization of classical Rayleigh-Taylor instability
    Piriz, A. R.
    Piriz, S. A.
    Tahir, N. A.
    PHYSICS OF PLASMAS, 2011, 18 (09)
  • [38] A comparison of mix models for the Rayleigh-Taylor instability
    Waltz, J.
    Gianakon, T. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 70 - 79
  • [39] Rayleigh-Taylor instability of superposed barotropic fluids
    Shivamoggi, B. K.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 521 - 527
  • [40] Viscous Rayleigh-Taylor instability in spherical geometry
    Mikaelian, Karnig O.
    PHYSICAL REVIEW E, 2016, 93 (02)