Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility
    Casner, A.
    Masse, L.
    Liberatore, S.
    Loiseau, P.
    Masson-Laborde, P. E.
    Jacquet, L.
    Martinez, D.
    Moore, A. S.
    Seugling, R.
    Felker, S.
    Haan, S. W.
    Remington, B. A.
    Smalyuk, V. A.
    Farrell, M.
    Giraldez, E.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [22] The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zou, S. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [23] Physics of ablative Rayleigh-Taylor and Landau-Darrieus instabilities
    Piriz, A. R.
    Tahir, N. A.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [24] Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility
    Casner, A.
    Smalyuk, V. A.
    Masse, L.
    Igumenshchev, I.
    Liberatore, S.
    Jacquet, L.
    Chicanne, C.
    Loiseau, P.
    Poujade, O.
    Bradley, D. K.
    Park, H. S.
    Remington, B. A.
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [25] Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets
    Shigemori, K
    Sakaiya, T
    Otani, K
    Fujioka, S
    Nakai, M
    Azechi, H
    Shiraga, H
    Tamari, Y
    Okuno, K
    Sunahara, A
    Nagatomo, H
    Murakami, M
    Nishihara, K
    Izawa, Y
    HIGH-POWER LASER ABLATION V, PTS 1 AND 2, 2004, 5448 : 634 - 641
  • [26] THE RAYLEIGH-TAYLOR INSTABILITY IN THE SPHERICAL PINCH
    CHEN, HB
    HILKO, B
    PANARELLA, E
    JOURNAL OF FUSION ENERGY, 1994, 13 (04) : 275 - 280
  • [27] Bubble competition in the Rayleigh-Taylor instability
    Wang, LL
    Li, JC
    RECENT ADVANCES IN FLUID MECHANICS, 2004, : 59 - 63
  • [28] Dynamic stabilization of ablative Rayleigh-Taylor instability in the presence of a temporally modulated laser pulse
    Zhao, K. G.
    Li, Z. Y.
    Wang, L. F.
    Di, Z. H.
    Xue, C.
    Zhang, H.
    Wu, J. F.
    Ye, W. H.
    Zhou, C. T.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [29] Rayleigh-Taylor instability in dielectric fluids
    Joshi, Amey
    Radhakrishna, M. C.
    Rudraiah, N.
    PHYSICS OF FLUIDS, 2010, 22 (06) : 1 - 10
  • [30] Cylindrical rotating Rayleigh-Taylor instability
    Scase, M. M.
    Sengupta, S.
    JOURNAL OF FLUID MECHANICS, 2021, 907