Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Weakly nonlinear ablative Rayleigh-Taylor instability at preheated ablation front
    Fan, Zhengfeng
    Luo, Jisheng
    Ye, Wenhua
    PHYSICS OF PLASMAS, 2009, 16 (10)
  • [2] Effect of preheating on the nonlinear evolution of the ablative Rayleigh-Taylor instability
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Yu, M. Y.
    EPL, 2011, 96 (03)
  • [3] Magnetic-field generation by the ablative nonlinear Rayleigh-Taylor instability
    Nilson, Philip M.
    Gao, L.
    Igumenshchev, I. V.
    Fiksel, G.
    Yan, R.
    Davies, J. R.
    Martinez, D.
    Smalyuk, V. A.
    Haines, M. G.
    Blackman, E. G.
    Froula, D. H.
    Betti, R.
    Meyerhofer, D. D.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [4] Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability
    Wang, L. F.
    Ye, W. H.
    He, X. T.
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [5] Numerical study on the laser ablative Rayleigh-Taylor instability
    Li, Zhiyuan
    Wang, Lifeng
    Wu, Junfeng
    Ye, Wenhua
    ACTA MECHANICA SINICA, 2020, 36 (04) : 789 - 796
  • [6] Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability
    Wang Li-Feng
    Ye Wen-Hua
    Li Ying-Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [7] Role of hot electrons in mitigating ablative Rayleigh-Taylor instability
    Li, Jun
    Yan, Rui
    Zhao, Bin
    Zheng, Jian
    Zhang, Huasen
    Lu, Xiyun
    PHYSICS OF PLASMAS, 2023, 30 (02)
  • [8] The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
    Lu, Yan
    Fan, Zhengfeng
    Lu, Xinpei
    Ye, Wenhua
    Zou, Changlin
    Zhang, Ziyun
    Zhang, Wen
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [9] Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers
    Liu, W. H.
    Wang, L. F.
    Ye, W. H.
    He, X. T.
    PHYSICS OF PLASMAS, 2012, 19 (04)
  • [10] Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability
    Ye, W. H.
    Wang, L. F.
    He, X. T.
    PHYSICS OF PLASMAS, 2010, 17 (12)