Effect of weak fluid inertia upon Jeffery orbits

被引:48
作者
Einarsson, J. [1 ]
Candelier, F. [2 ]
Lundell, F. [3 ]
Angilella, J. R. [4 ]
Mehlig, B. [1 ]
机构
[1] Gothenburg Univ, Dept Phys, SE-41296 Gothenburg, Sweden
[2] Univ Aix Marseille, CNRS, IUSTI UMR 7343, F-13013 Marseille 13, France
[3] KTH Royal Inst Technol, SE-10044 Stockholm, Sweden
[4] Univ Caen, LUSAC ESIX Cherbourg 50130, Dept Math & Mech, F-14032 Caen, France
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 04期
关键词
SPHEROIDAL PARTICLES; SMALL SPHERE; MOTION; FLOW; ROTATION;
D O I
10.1103/PhysRevE.91.041002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the rotation of small neutrally buoyant axisymmetric particles in a viscous steady shear flow. When inertial effects are negligible the problem exhibits infinitely many periodic solutions, the "Jeffery orbits." We compute how inertial effects lift their degeneracy by perturbatively solving the coupled particle-flow equations. We obtain an equation of motion valid at small shear Reynolds numbers, for spheroidal particles with arbitrary aspect ratios. We analyze how the linear stability of the "log-rolling" orbit depends on particle shape and find it to be unstable for prolate spheroids. This resolves a puzzle in the interpretation of direct numerical simulations of the problem. In general, both unsteady and nonlinear terms in the Navier-Stokes equations are important.
引用
收藏
页数:4
相关论文
共 27 条