The condition ε-pseudospectra on non-Archimedean Banach space

被引:0
作者
Ammar, Aymen [1 ]
Bouchekoua, Ameni [1 ]
Lazrag, Nawrez [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5,BP 1171, Sfax 3000, Tunisia
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2022年 / 28卷 / 02期
关键词
Non-Archimedean space; Condition epsilon-pseudospectrum; Essential condition epsilon-pseudospectrum;
D O I
10.1007/s40590-022-00424-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerned with the condition epsilon-pseudospectrum and the essential condition epsilon-pseudospectrum in a non-Archimedean Banach space. We introduce the first notion and study some of its properties. Moreover, we find a relationship between the condition epsilon-pseudospectrum and the epsilon-pseudospectrum. After that, we give a few properties of the essential condition epsilon-pseudospectrum.
引用
收藏
页数:24
相关论文
共 16 条
[1]  
Ammar A., 2020, faac, V12, P33
[2]   Sequence of Linear Operators in Non-Archimedean Banach Spaces [J].
Ammar, Aymen ;
Jeribi, Aref ;
Lazrag, Nawrez .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
[3]   Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in Eω [J].
Ammar, Aymen ;
Bouchekoua, Ameni ;
Jeribi, Aref .
FILOMAT, 2019, 33 (12) :3961-3975
[4]  
Diagana T, 2007, NON ARCHIMEDEAN LINE
[5]  
Diagana T., 2016, SpringerBriefs in Mathematics
[6]  
Diarra B., 1998, J. Analysis, V6, P55
[7]   Ultrametric Calkin algebras [J].
Diarra, Bertin .
ADVANCES IN ULTRAMETRIC ANALYSIS, 2018, 704 :111-125
[8]   THE HAHN-BANACH THEOREM FOR NON-ARCHIMEDEAN-VALUED FIELDS [J].
INGLETON, AW .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (01) :41-45
[9]  
Kulkarni SH, 2008, ACTA SCI MATH, V74, P625
[10]  
Monna A.F., 1970, ERGEBNISSE MATH IHRE, V56