Field-Created Coordinate Cation Bridges Enable Conductance Modulation and Artificial Synapse within Metal Nanoparticles

被引:16
作者
Guo, Jiahui [1 ,2 ]
Liu, Lin [1 ,2 ]
Bian, Baoan [3 ]
Wang, Jingyu [1 ,2 ]
Zhao, Xing [1 ]
Zhang, Yuchun [1 ]
Yan, Yong [1 ,2 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
metal nanoparticles; coordinated bridges; artificial synapse; synaptic plasticity; pattern recognition; ULTRASENSITIVE DETECTION; NONVOLATILE; RECOGNITION; MEMRISTOR; NETWORKS; CIRCUITS; DEVICE;
D O I
10.1021/acs.nanolett.2c02675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When metal nanoparticles are functionalized with charged ligands, the movement of counterions and conduction electrons is coupled, which enables us to develop electronic devices, including diodes, transistors, and logic gates, but dynamically modulating the conductivity of a synaptic device within these materials has proved challenging. Here we show that an artificial synapse can be created from thin films of functionalized metal nanoparticles using an active silver electrode. The electricfield-injected Ag+ coordinates with carboxyl ligands that sets up a conduction bridge to increase the nanoparticle conductivity by reducing the electron tunneling/hopping energy barriers. The dynamic modulation of conductivity allows us to implement several important synaptic functions such as potentiation/depression, paired-pulse facilitation, learning behaviors including shortterm to long-term memory transition, self-learning, and massed leaning vs spaced learning. Finally, based on the nonvolatile characteristics, the metal nanoparticle synapse is used to build a single-layer hardware spiking neural network (SNN) for pattern recognition.
引用
收藏
页码:6794 / 6801
页数:8
相关论文
共 46 条
[1]  
[Anonymous], 1968, PSYCHOL LEARNING MOT, DOI DOI 10.1016/S0079-7421(08)60422-3
[2]  
Berson J, 2015, NAT MATER, V14, P613, DOI [10.1038/nmat4254, 10.1038/NMAT4254]
[3]   Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing [J].
Choi, Sanghyeon ;
Yang, Jehyeon ;
Wang, Gunuk .
ADVANCED MATERIALS, 2020, 32 (51)
[4]   Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release [J].
Debanne, D ;
Guerineau, NC ;
Gahwiler, BH ;
Thompson, SM .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 491 (01) :163-176
[5]   Real-time in situ optical tracking of oxygen vacancy migration in memristors [J].
Di Martino, Giuliana ;
Demetriadou, Angela ;
Li, Weiwei ;
Kos, Dean ;
Zhu, Bonan ;
Wang, Xuejing ;
de Nijs, Bart ;
Wang, Haiyan ;
MacManus-Driscoll, Judith ;
Baumberg, Jeremy J. .
NATURE ELECTRONICS, 2020, 3 (11) :687-693
[6]   Tunnelling current recognition through core-satellite gold nanoparticles for ultrasensitive detection of copper ions [J].
Foroushani, Alireza ;
Zhang, Yuanchao ;
Li, Da ;
Mathesh, Motilal ;
Wang, Hongbin ;
Yan, Fuhua ;
Barrow, Colin J. ;
He, Jin ;
Yang, Wenrong .
CHEMICAL COMMUNICATIONS, 2015, 51 (14) :2921-2924
[7]   An Oxide Schottky Junction Artificial Optoelectronic Synapse [J].
Gao, Shuang ;
Liu, Gang ;
Yang, Huali ;
Hu, Chao ;
Chen, Qilai ;
Gong, Guodong ;
Xue, Wuhong ;
Yi, Xiaohui ;
Shang, Jie ;
Li, Run-Wei .
ACS NANO, 2019, 13 (02) :2634-2642
[8]   The effect of distributed practice: Neuroscience, cognition, and education [J].
Gerbier, Emilie ;
Toppino, Thomas C. .
TRENDS IN NEUROSCIENCE AND EDUCATION, 2015, 4 (03) :49-59
[9]   Charge disproportionate molecular redox for discrete memristive and memcapacitive switching [J].
Goswami, Sreetosh ;
Rath, Santi P. ;
Thompson, Damien ;
Hedstrom, Svante ;
Annamalai, Meenakshi ;
Pramanick, Rajib ;
Ilic, B. Robert ;
Sarkar, Soumya ;
Hooda, Sonu ;
Nijhuis, Christian A. ;
Martin, Jens ;
Williams, R. Stanley ;
Goswami, Sreebrata ;
Venkatesan, T. .
NATURE NANOTECHNOLOGY, 2020, 15 (05) :380-+
[10]  
Goswami S, 2017, NAT MATER, V16, P1216, DOI [10.1038/NMAT5009, 10.1038/nmat5009]