On discrete sequential fractional boundary value problems

被引:127
作者
Goodrich, Christopher S. [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
Discrete fractional calculus; Sequential fractional difference; Boundary value problem; Cone; Positive solution; MULTIPLE POSITIVE SOLUTIONS; INITIAL-VALUE PROBLEMS; EXISTENCE; EQUATIONS; SYSTEM;
D O I
10.1016/j.jmaa.2011.06.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is - Delta(mu 1) Delta(mu 2) Delta(mu 3) y(t) = f (t + mu(1) + mu(2) + mu(3) - 1, y(t+mu(1) + mu(2) + mu(3) - 1)) subject to the conjugate boundary conditions y(0) = 0 = y(b + 2), where f : [1, b + 1](N0) x R -> [0, +infinity) is a continuous function and mu(1), mu(2), mu(3) epsilon (0,1) satisfy 1 < mu(2) + mu(2) + mu(3) < 2 and 1 < mu(1) + mu(2) + mu(3) < 2. We also obtain results for deltanabla discrete fractional boundary value problems. As an application of our analysis, we give conditions under which such problems will admit at least one positive solution. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 46 条
[1]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[2]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[3]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[4]  
Anderson D.R., 2005, ELECT J DIFFERENTIAL, V24
[5]   Existence of solutions for a cantilever beam problem [J].
Anderson, Douglas R. ;
Hoffacker, Joan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :958-973
[6]   An even-order three-point boundary value problem on time scales [J].
Anderson, DR ;
Avery, RI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) :514-525
[7]  
Anderson DR, 2003, MATH COMPUT MODEL, V38, P481, DOI [10.1016/S0895-7177(03)90020-3, 10.1016/S0895-7177(03)00244-9]
[8]   Solutions to second-order three-point problems on time scales [J].
Anderson, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (08) :673-688
[9]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[10]   Fractional order differential equations on an unbounded domain [J].
Arara, A. ;
Benchohra, M. ;
Hamidi, N. ;
Nieto, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :580-586