Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning

被引:62
作者
Knoll, Lukas [1 ]
Breuer, Lutz [1 ]
Bach, Martin [1 ]
机构
[1] Justus Liebig Univ Giessen, Res Ctr BioSyst Land Use & Nutr iFZ, Inst Landscape Ecol & Resources Management ILR, Giessen, Germany
来源
ENVIRONMENTAL RESEARCH LETTERS | 2020年 / 15卷 / 06期
关键词
groundwater quality; nitrate pollution; redox conditions; random forest; uncertainty; large-scale; CENTRAL VALLEY; QUANTILE REGRESSION; FEATURE-SELECTION; RANDOM FOREST; DENITRIFICATION; UNCERTAINTY; PREDICTION; FRAMEWORK; POLLUTION; AQUIFER;
D O I
10.1088/1748-9326/ab7d5c
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The protection of water resources and development of mitigation strategies require large-scale information on water pollution such as nitrate. Machine learning techniques like random forest (RF) have proven their worth for estimating groundwater quality based on spatial environmental predictors. We investigate the potential of RF and quantile random forest (QRF) to estimate redox conditions and nitrate concentration in groundwater (1 km x 1 km resolution) using the European Water Framework Directive groundwater monitoring network as well as spatial environmental information available throughout Germany. The RF model for nitrate achieves a good predictive performance with an R-2 of 0.52. Dominant predictors are the redox conditions in the groundwater body, hydrogeological units and the percentage of arable land. An uncertainty assessment using QRF shows rather large uncertainties with a mean prediction interval (MPI) of 53.0 mg l(-1). This study represents the first nation-wide data-driven assessment of the spatial distribution of groundwater nitrate concentrations for Germany.
引用
收藏
页数:12
相关论文
共 59 条
  • [1] [Anonymous], 2018, EEA Report, P90, DOI [DOI 10.2800/303664, 10.2800/303664]
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Predicting groundwater redox status on a regional scale using linear discriminant analysis
    Close, M. E.
    Abraham, P.
    Humphries, B.
    Lilburne, L.
    Cuthill, T.
    Wilson, S.
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 2016, 191 : 19 - 32
  • [4] Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments
    Dogulu, N.
    Lopez, P. Lopez
    Solomatine, D. P.
    Weerts, A. H.
    Shrestha, D. L.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (07) : 3181 - 3201
  • [5] EC, 2003, GUID NO 7 MON WAT FR
  • [6] Consequences of human modification of the global nitrogen cycle
    Erisman, Jan Willem
    Galloway, James N.
    Seitzinger, Sybil
    Bleeker, Albert
    Dise, Nancy B.
    Petrescu, A. M. Roxana
    Leach, Allison M.
    de Vries, Wim
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1621)
  • [7] Possibilities and limitations of validating modelled nitrate inputs into groundwater at the macroscale using the N2/Ar-method
    Eschenbach, Wolfram
    Budziak, Dorte
    Elbracht, Joerg
    Hoeper, Heinrich
    Krienen, Lisa
    Kunkel, Ralf
    Meyer, Knut
    Well, Reinhard
    Wendland, Frank
    [J]. GRUNDWASSER, 2018, 23 (02) : 125 - 139
  • [8] Groundwater: the processes and global significance of aquifer degradation
    Foster, SSD
    Chilton, PJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 358 (1440) : 1957 - 1972
  • [9] Comparison of four learning-based methods for predicting groundwater redox status
    Friedel, M. J.
    Wilson, S. R.
    Close, M. E.
    Buscema, M.
    Abraham, P.
    Banasiak, L.
    [J]. JOURNAL OF HYDROLOGY, 2020, 580
  • [10] Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions
    Galloway, James N.
    Townsend, Alan R.
    Erisman, Jan Willem
    Bekunda, Mateete
    Cai, Zucong
    Freney, John R.
    Martinelli, Luiz A.
    Seitzinger, Sybil P.
    Sutton, Mark A.
    [J]. SCIENCE, 2008, 320 (5878) : 889 - 892