Tunneling potentials for the tunneling action: gauge invariance

被引:10
作者
Arunasalam, Suntharan [1 ,2 ,3 ]
Ramsey-Musolf, Michael J. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Phys & Astron, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Key Lab Particle Astrophys & Cosmol MOE, Shanghai 200240, Peoples R China
[4] Univ Massachusetts, Amherst Ctr Fundamental Interact, Dept Phys, Amherst, MA 01003 USA
[5] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA
基金
中国国家自然科学基金;
关键词
Gauge Symmetry; Spontaneous Symmetry Breaking; ELECTROWEAK PHASE-TRANSITION; SYMMETRY-BREAKING; FALSE VACUUM; DEPENDENCE; FATE;
D O I
10.1007/JHEP08(2022)138
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We formulate a procedure to obtain a gauge-invariant tunneling rate at zero temperature using the recently developed tunneling potential approach. This procedure relies on a consistent power counting in gauge coupling and a derivative expansion. The tunneling potential approach, while numerically more efficient than the standard bounce solution method, inherits the gauge-dependence of the latter when naively implemented. Using the Abelian Higgs model, we show how to obtain a tunneling rate whose residual gauge-dependence arises solely from the polynomial approximations adopted in the tunneling potential computation.
引用
收藏
页数:21
相关论文
共 38 条
[1]   GAUGE-INVARIANCE AND THE EFFECTIVE POTENTIAL [J].
AITCHISON, IJR ;
FRASER, CM .
ANNALS OF PHYSICS, 1984, 156 (01) :1-40
[2]   Di-Higgs production in the 4b channel and gravitational wave complementarity [J].
Alves, Alexandre ;
Goncalves, Dorival ;
Ghosh, Tathagata ;
Guo, Huai-Ke ;
Sinha, Kuver .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
[3]   Collider and gravitational wave complementarity in exploring the singlet extension of the standard model [J].
Alves, Alexandre ;
Ghosh, Tathagata ;
Guo, Huai-Ke ;
Sinha, Kuver ;
Vagie, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
[4]   Precision decay rate calculations in quantum field theory [J].
Andreassen, Anders ;
Farhi, David ;
Frost, William ;
Schwartz, Matthew D. .
PHYSICAL REVIEW D, 2017, 95 (08)
[5]   The end point of the first-order phase transition of the SU(2) gauge-Higgs model on a 4-dimensional isotropic lattice [J].
Aoki, Y ;
Csikor, F ;
Fodor, Z ;
Ukawa, A .
PHYSICAL REVIEW D, 1999, 60 (01)
[6]   Bubbleprofiler: Finding the field profile and action for cosmological phase transitions [J].
Athron, Peter ;
Balazs, Csaba ;
Bardsley, Michael ;
Fowlie, Andrew ;
Harries, Dylan ;
White, Graham .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 244 :448-468
[7]   BSMPT v2 a tool for the electroweak phase transition and the baryon asymmetry of the universe in extended Higgs Sectors *,** [J].
Basler, Philipp ;
Muehlleitner, Margarete ;
Mueller, Jonas .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 269
[8]   BSMPT (Beyond the Standard Model Phase Transitions): A tool for the electroweak phase transition in extended Higgs sectors [J].
Basler, Philipp ;
Muehlleitner, Margarete .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 :62-85
[9]   FATE OF FALSE VACUUM .2. 1ST QUANTUM CORRECTIONS [J].
CALLAN, CG ;
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1762-1768
[10]   Detecting gravitational waves from cosmological phase transitions with LISA: an update [J].
Caprini, Chiara ;
Chala, Mikael ;
Dorsch, Glauber C. ;
Hindmarsh, Mark ;
Huber, Stephan J. ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Rummukainen, Kari ;
Schwaller, Pedro ;
Servant, Geraldine ;
Tranberg, Anders ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03)