Compactness results in Symplectic Field Theory

被引:276
作者
Bourgeois, F
Eliashberg, Y
Hofer, H
Wysocki, K
Zehnder, E
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
[2] Stanford Univ, Stanford, CA 94305 USA
[3] NYU, Courant Inst, New York, NY 10012 USA
[4] Univ Melbourne, Parkville, Vic 3010, Australia
[5] ETH Zentrum, CH-8092 Zurich, Switzerland
关键词
symplectic field theory; Gromov compactness; contact geometry; holomorphic curves;
D O I
10.2140/gt.2003.7.799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [ 4]. We prove compactness results for moduli spaces of holomorphic curves arising in Symplectic Field Theory. The theorems generalize Gromov's compactness theorem in [ 8] as well as compactness theorems in Floer homology theory, [ 6, 7], and in contact geometry, [ 9, 19].
引用
收藏
页码:799 / 888
页数:90
相关论文
共 28 条
[1]  
Bourgeois F., 2002, THESIS STANFORD U
[2]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75
[3]  
EKHOLM T, ARXIVMATHSG0210124
[4]   LAGRANGIAN INTERSECTIONS IN CONTACT GEOMETRY [J].
ELIASHBERG, Y ;
HOFER, H ;
SALAMON, D .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :244-269
[5]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[6]   MORSE-THEORY FOR LAGRANGIAN INTERSECTIONS [J].
FLOER, A .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (03) :513-547
[8]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[9]   The dynamics on three-dimensional strictly convex energy surfaces [J].
Hofer, H ;
Wysocki, K ;
Zehnder, E .
ANNALS OF MATHEMATICS, 1998, 148 (01) :197-289
[10]  
Hofer H, 1999, PROG NONLIN, V35, P381