On the derivation of a Nonlinear Generalized Langevin Equation

被引:7
作者
Di Cairano, Loris [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Dept Phys, Fac Math Comp Sci & Nat Sci, D-52062 Aachen, Germany
[2] Forschungszentrum Julich, Computat Biomed, Inst Neurosci & Med INM 9, D-52428 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat IAS 5, D-52428 Julich, Germany
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2022年 / 6卷 / 01期
关键词
generalized langevin equation; nonlinearity; hamiltonian systems; diffusive processes; BROWNIAN-MOTION; DIFFUSION;
D O I
10.1088/2399-6528/ac438d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We recast the Zwanzig's derivation of a nonlinear generalized Langevin equation (GLE) for a heavy particle interacting with a heat bath in a more general framework. We show that it is necessary to readjust the Zwanzig's definitions of the kernel matrix and noise vector in the GLE in order to recover the correct definition of fluctuation-dissipation theorem and to be able performing consistently the continuum limit. As shown by Zwanzig, the nonlinear feature of the resulting GLE is due to the nonlinear dependence of the equilibrium map by the heavy particle variables. Such an equilibrium map represents the global equilibrium configuration of the heat bath particles for a fixed (instantaneous) configuration of the system. Following the same derivation of the GLE, we show that a deeper investigation of the equilibrium map, considered in the Zwanzig's Hamiltonian, is necessary. Moreover, we discuss how to get an equilibrium map given a general interaction potential. Finally, we provide a renormalization procedure which allows to divide the dependence of the equilibrium map by coupling coefficient from the dependence by the system variables yielding a more rigorous mathematical structure of the nonlinear GLE.
引用
收藏
页数:11
相关论文
共 34 条
[1]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[2]   On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator [J].
Camargo, R. Figueiredo ;
de Oliveira, E. Capelas ;
Vaz, J., Jr. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
[3]   ON THE GENERALIZED LANGEVIN EQUATION - CLASSICAL AND QUANTUM-MECHANICAL [J].
CORTES, E ;
WEST, BJ ;
LINDENBERG, K .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (06) :2708-2717
[4]   Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach [J].
Di Cairano, Loris ;
Stamm, Benjamin ;
Calandrini, Vania .
BIOPHYSICAL JOURNAL, 2021, 120 (21) :4722-4737
[5]   Series solution of nonlinear differential equations by a novel extension of the Laplace transform method [J].
Fatoorehchi, Hooman ;
Abolghasemi, Hossein .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) :1299-1319
[6]   Generalized Langevin equation with hydrodynamic backflow: Equilibrium properties [J].
Fodor, Etienne ;
Grebenkov, Denis S. ;
Visco, Paolo ;
van Wijland, Frederic .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 422 :107-112
[7]   STATISTICAL MECHANICS OF ASSEMBLIES OF COUPLED OSCILLATORS [J].
FORD, GW ;
KAC, M ;
MAZUR, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (04) :504-+
[8]  
Goychuk I, 2012, ADV CHEM PHYS, V150, P187
[9]   Brownian motion in a Maxwell fluid [J].
Grimm, Matthias ;
Jeney, Sylvia ;
Franosch, Thomas .
SOFT MATTER, 2011, 7 (05) :2076-2084
[10]   Introduction:: 100 years of Brownian motion -: art. no. 026101 [J].
Hänggi, P ;
Marchesoni, F .
CHAOS, 2005, 15 (02)