Radiomics for precision medicine in glioblastoma

被引:41
作者
Aftab, Kiran [1 ]
Aamir, Faiqa Binte [2 ]
Mallick, Saad [2 ]
Mubarak, Fatima [3 ]
Pope, Whitney B. [4 ]
Mikkelsen, Tom [5 ,6 ]
Rock, Jack P. [7 ]
Enam, Syed Ather [1 ]
机构
[1] Aga Khan Univ, Sect Neurosurg, Dept Surg, Karachi, Pakistan
[2] Aga Khan Univ, Coll Med, Karachi, Pakistan
[3] Aga Khan Univ, Dept Radiol, Karachi, Pakistan
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[5] Henry Ford Hosp, Dept Neurol, Detroit, MI 48202 USA
[6] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[7] Henry Ford Hlth Syst, Dept Neurosurg, Detroit, MI USA
关键词
Glioblastoma; Neuro-oncology; Radiomics; Radiogenomics; Primary brain tumor; TEXTURE FEATURES; GENE-EXPRESSION; MULTIFORME PATIENTS; IMAGING SURROGATES; SURVIVAL; MRI; PREDICTION; BIOMARKERS; MODEL; CLASSIFICATION;
D O I
10.1007/s11060-021-03933-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients. Methods We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma. Results Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice. Conclusion Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.
引用
收藏
页码:217 / 231
页数:15
相关论文
共 93 条
[1]   Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation [J].
Abrigo, Jill M. ;
Fountain, Daniel M. ;
Provenzale, James M. ;
Law, Eric K. ;
Kwong, Joey S. W. ;
Hart, Michael G. ;
Tam, Wilson Wai San .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (01)
[2]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[3]  
[Anonymous], QUANTITATIVE IMAGING
[4]  
[Anonymous], MED IMAGE ARTIFICIAL
[5]   Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis [J].
Artzi, Moran ;
Bressler, Idan ;
Ben Bashat, Dafna .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (02) :519-528
[6]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[7]   Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation [J].
Bae, Sohi ;
An, Chansik ;
Ahn, Sung Soo ;
Kim, Hwiyoung ;
Han, Kyunghwa ;
Kim, Sang Wook ;
Park, Ji Eun ;
Kim, Ho Sung ;
Lee, Seung-Koo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients [J].
Baine, Michael ;
Burr, Justin ;
Du, Qian ;
Zhang, Chi ;
Liang, Xiaoying ;
Krajewski, Luke ;
Zima, Laura ;
Rux, Gerard ;
Zheng, Dandan .
JOURNAL OF IMAGING, 2021, 7 (02)
[9]   Conventional MRI radiomics in patients with suspected early- or pseudo-progression [J].
Bani-Sadr, Alexandre ;
Eker, Omer Faruk ;
Berner, Lise-Prune ;
Ameli, Roxana ;
Hermier, Marc ;
Barritault, Marc ;
Meyronet, David ;
Guyotat, Jacques ;
Jouanneau, Emmanuel ;
Honnorat, Jerome ;
Ducray, Francois ;
Berthezene, Yves .
NEURO-ONCOLOGY ADVANCES, 2019, 1 (01)
[10]   Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging [J].
Barajas, Ramon F., Jr. ;
Phillips, Joanna J. ;
Parvataneni, Rupa ;
Molinaro, Annette ;
Essock-Burns, Emma ;
Bourne, Gabriela ;
Parsa, Andrew T. ;
Aghi, Manish K. ;
McDermott, Michael W. ;
Berger, Mitchel S. ;
Cha, Soonmee ;
Chang, Susan M. ;
Nelson, Sarah J. .
NEURO-ONCOLOGY, 2012, 14 (07) :942-954