Multi-View Face Recognition Via Well-Advised Pose Normalization Network

被引:8
|
作者
Shao, Xiaohu [1 ,2 ]
Zhou, Xiangdong [1 ]
Li, Zhenghao [1 ]
Shi, Yu [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view face recognition; GAN; face frontalization; quality assessment; MODEL;
D O I
10.1109/ACCESS.2020.2983459
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous face frontalization methods based on 3D Morphable Model (3DMM) and Generative Adversarial Networks (GAN) have made great progress in multi-view face recognition. However, facial feature analysis and identity discrimination often suffer from failure frontalization results because of monotonous single-domain training and unpredictable input profile faces. To overcome the drawback, we present a novel approach named Well-advised Pose Normalization Network (WAPNN), which leverages multiple domains and extracts features considering their frontalization qualities wisely, to achieve a high accuracy on multi-view face recognition. Through multi-domain datasets, we design an end-to-end facial pose normalization network with adaptive weights on different objectives to exploit potentialities of various profile-front relationships. Meanwhile, the proposed method encourages intra-class compactness and inter-class separability between facial features by introducing quality-aware feature fusion. Experimental analyses show that our method effectively recovers frontal faces with good-quality textures and high identity-preserving, and significantly reduces the impact of various poses on face recognition under both constrained and wild environments.
引用
收藏
页码:66400 / 66410
页数:11
相关论文
共 50 条
  • [21] Multi-View Gait Recognition Based on a Spatial-Temporal Deep Neural Network
    Tong, Suibing
    Fu, Yuzhuo
    Yue, Xinwei
    Ling, Hefei
    IEEE ACCESS, 2018, 6 : 57583 - 57596
  • [22] Multi-view 3D Morphable Face Reconstruction via Canonical Volume Fusion
    Tian, Jingqi
    Wang, Zhibo
    Lu, Ming
    Xu, Feng
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 545 - 558
  • [23] Common Subspace Based Low-Rank and Joint Sparse Representation for Multi-view Face Recognition
    Wang, Ziqiang
    Ouyang, Yingzhi
    Zhu, Weidan
    Sun, Bin
    Liu, Qiang
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 145 - 156
  • [24] A novel multi-view SVM based on consistent hidden density distributions between views for face recognition
    Jiang, Zhibin
    Zhou, Jie
    Zhang, Yuanpeng
    Wang, Shitong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5245 - 5259
  • [25] Large Pose Face Recognition via Facial Representation Learning
    Xin, Jingwei
    Wei, Zikai
    Wang, Nannan
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 934 - 946
  • [26] DRCNN: Dynamic Routing Convolutional Neural Network for Multi-View 3D Object Recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 868 - 877
  • [27] Multi-pose face reconstruction and Gabor-based dictionary learning for face recognition
    He, Huanjie
    Liang, Jiuzhen
    Hou, Zhenjie
    Di, Lan
    Xia, Yunfei
    APPLIED INTELLIGENCE, 2023, 53 (13) : 16648 - 16662
  • [28] Multi-view feature selection via sparse tensor regression
    Yuan, Haoliang
    Lo, Sio-Long
    Yin, Ming
    Liang, Yong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (05)
  • [29] Enhanced tensor multi-view clustering via dual constraints
    Liu, Wenzhe
    Liu, Luyao
    Zhang, Yong
    Feng, Lin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [30] Cross-modality online distillation for multi-view action recognition
    Xu, Chao
    Wu, Xia
    Li, Yachun
    Jin, Yining
    Wang, Mengmeng
    Liu, Yong
    NEUROCOMPUTING, 2021, 456 : 384 - 393