Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions

被引:65
作者
Tai, Yulei [1 ,2 ]
Wang, Li [1 ]
Gao, Jingmin [1 ]
Amer, Wael A. [1 ]
Ding, Wenbing [1 ]
Yu, Haojie [1 ]
机构
[1] Zhejiang Univ, Dept Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Wenzhou Univ, Oujiang Coll, Wenzhou 325027, Peoples R China
关键词
Magnetic properties; Porous microspheres; Phenol; Adsorption; WASTE-WATER; ORGANIC POLLUTANTS; AZO-DYE; REMOVAL; NANOPARTICLES; ADSORPTION; EXTRACTION; OXIDATION; IRON; DEGRADATION;
D O I
10.1016/j.jcis.2011.04.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple strategy to fabricate magnetic porous microspheres of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) was demonstrated. The magnetic microspheres, consisting of polymer-coated iron oxide nanoparticles, were synthesized by the modified suspension polymerization of methacrylate and divinylbenzene in the presence of a magnetic fluid. The morphology and the properties of the magnetic porous microspheres were examined by scanning electron microscopy, transmission electron microscopy, superconducting quantum interference device, Fourier transform infrared spectroscopy, thermogravimetry, and X-ray powder diffraction. The pore size distribution and the specific surface area of the microspheres were measured by nitrogen sorption and mercury porosimetry technique. As predicted from the previous knowledge, the magnetic porous microspheres possessed a high specific surface area using n-hexane as a porogen. It was further found that the amounts of divinylbenzene and methacrylate, the ratio of porogens, and the dosage of ferrofluids affect the specific surface area of the microspheres. Furthermore, the microspheres were applied to remove phenol from aqueous solutions. The results showed that the microspheres had a high adsorption capacity for phenol and a high separation efficiency due to their porous structure, polar groups, and superparamagnetic characteristic. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 738
页数:8
相关论文
共 50 条
[1]   Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts [J].
Abu-Reziq, R ;
Alper, H ;
Wang, DS ;
Post, ML .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (15) :5279-5282
[2]   Adsorption of phenols from wastewater [J].
Ahmaruzzaman, M ;
Sharma, DK .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 287 (01) :14-24
[3]   Application of biosorption for the removal of organic pollutants: A review [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :997-1026
[4]   Enzymatic removal of phenol and p-chlorophenol in enzyme reactor:: Horseradish peroxidase immobilized on magnetic beads [J].
Bayramoglu, Guelay ;
Arica, M. Yakup .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 156 (1-3) :148-155
[5]  
CHEN WY, 1991, RES J WATER POLLUT C, V63, P958
[6]   Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution [J].
Chen, Yi-Hung ;
Liu, Yi-You ;
Lin, Rong-Hsien ;
Yen, Fu-Shan .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 163 (2-3) :973-981
[7]   Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors [J].
Chertok, Beata ;
Moffat, Bradford A. ;
David, Allan E. ;
Yu, Faquan ;
Bergemann, Christian ;
Ross, Brian D. ;
Yang, Victor C. .
BIOMATERIALS, 2008, 29 (04) :487-496
[8]   Polymer supported inorganic nanoparticles: characterization and environmental applications [J].
Cumbal, L ;
Greenleaf, J ;
Leun, D ;
SenGupta, AK .
REACTIVE & FUNCTIONAL POLYMERS, 2003, 54 (1-3) :167-180
[9]   Arsenic removal using a polymeric/inorganic hybrid sorbent [J].
DeMarco, MJ ;
Sengupta, AK ;
Greenleaf, JE .
WATER RESEARCH, 2003, 37 (01) :164-176
[10]   Preparation and properties of magnetite and polymer magnetite nanoparticles [J].
Dresco, PA ;
Zaitsev, VS ;
Gambino, RJ ;
Chu, B .
LANGMUIR, 1999, 15 (06) :1945-1951