Effect of Using a Ceramic Separator on the Performance of Hydroponic Constructed Wetland-Microbial Fuel Cell

被引:19
|
作者
Khuman, Chabungbam Niranjit [1 ]
Bhowmick, Gourav Dhar [1 ]
Ghangrekar, Makarand M. [2 ,3 ]
Mitra, Arunabha [1 ]
机构
[1] Indian Inst Technol, Dept Agr & Food Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, Sch Environm Sci & Engn, Kharagpur 721302, W Bengal, India
关键词
Ceramic separator; Constructed wetland; Energy recovery; Hydroponic system; Microbial fuel cell; Wastewater treatment; WASTE-WATER TREATMENT; AZO-DYE; REMOVAL; GENERATION; SLUDGE; OXYGEN; MEMBRANE; CATALYST; ENHANCE; SYSTEM;
D O I
10.1061/(ASCE)HZ.2153-5515.0000499
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lack of proper physical separation between the anodic and cathodic zones of a constructed wetland-microbial fuel cell (CW-MFC) causes higher oxygen diffusion into the anodic zone, which leads to nonproductive electron losses. In this investigation, performance of two upflow hydroponic CW-MFCs with a low-cost ceramic separator (R1) and without a separator (R2) was evaluated withCanna indicaat the cathodic side. The chemical oxygen demand removal efficiencies of R1 and R2 were found to be 86.2 +/- 8.1% and 91.5 +/- 4.9%, respectively. However, from the polarization plots, internal resistance of R1 (240 omega) was found to be 2.6 times lower than that of R2 (626 omega). In addition, it was revealed that R1 (258.78 mW center dot m(-3)) exhibited almost three times higher power density than R2 (91.02 mW center dot m(-3)). The normalized energy recovery of the CW-MFC with a ceramic separator was also 2.7 times higher than that without a separator. The presence of a separator thus facilitated better anaerobicity to support substrate utilization by electrogenesis in the anodic zone of R1 and prevented oxygen diffusion, which resulted in higher energy recovery while only marginally compromising the efficiency of organic matter removal. (c) 2020 American Society of Civil Engineers.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Removal of nutrients and bioelectricity generation from institutional wastewater using constructed wetland-microbial fuel cell
    Angassa, Kenatu
    Getu, Tolesa
    Abewaa, Mikiyas
    RESULTS IN ENGINEERING, 2024, 24
  • [22] Effect of filter medium on operational performance of a constructed wetland-microbial fuel cell system based on electrode dependent ammonium oxidation
    Fan, Hong-Yong
    Wang, Hua-Wei
    Pan, Ling-Yang
    Chu, Gang
    Sun, Ying-Jie
    Wang, Zhen
    Zhongguo Huanjing Kexue/China Environmental Science, 2023, 43 (11): : 5833 - 5844
  • [23] Effects of multiple key factors on the performance of petroleum coke-based constructed wetland-microbial fuel cell
    Niu, Yulong
    Qu, Mingxiang
    Du, Jingjing
    Wang, Xilin
    Yuan, Shuaikang
    Zhang, Lingyan
    Zhao, Jianguo
    Jin, Baodan
    Wu, Haiming
    Wu, Shubiao
    Cao, Xia
    Pang, Long
    CHEMOSPHERE, 2023, 315
  • [24] Seasonal variations of pollutants removal and microbial activity in integrated constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    WATER REUSE, 2021, 11 (02) : 312 - 328
  • [25] The synergistic effect of electrode spacing and aeration intensity on the performance of pyrite based constructed wetland-microbial fuel cells
    Du, Jingjing
    Wang, Maosen
    Zhang, Xueting
    Tao, Tianying
    Gao, Mengxi
    Su, Yan
    Zhang, Yufan
    Zhao, Jianguo
    Jin, Baodan
    Cao, Xia
    Xu, Yuanqian
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [26] Modified basalt fiber filled in constructed wetland-microbial fuel cell: Comparison of performance and microbial impacts under PFASs exposure
    Qian, Xiuwen
    Huang, Juan
    Cao, Chong
    Yao, Jiawei
    Wu, Yufeng
    Wang, Luming
    Wang, Xinyue
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 476
  • [27] Integrated Constructed Wetland-Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment
    Sonu, Kumar
    Sogani, Monika
    Syed, Zainab
    CHEMISTRYSELECT, 2021, 6 (32): : 8323 - 8328
  • [28] Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbial fuel cells
    Chen, Yiting
    Yan, Jun
    Chen, Mengli
    Guo, Fucheng
    Liu, Tao
    Chen, Yi
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2022, 16 (12)
  • [29] An overview on constructed wetland-microbial fuel cell: Greenhouse gases emissions and extracellular electron transfer
    Zhang, Liangjing
    Liu, Yunlong
    Lv, Shucong
    Wang, Rui
    Wang, Yu
    Lin, Kuixuan
    Hu, Xiaokun
    Liu, Yuchen
    Dong, Zhaojun
    Liu, Lusan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [30] Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbial fuel cells
    Yiting Chen
    Jun Yan
    Mengli Chen
    Fucheng Guo
    Tao Liu
    Yi Chen
    Frontiers of Environmental Science & Engineering, 2022, 16