A note on Kazdan-Warner equation on networks

被引:5
作者
Camilli, Fabio [3 ]
Marchi, Claudio [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, Via Gradenigo 6-B, I-35131 Padua, Italy
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Gradenigo 6-B, I-35131 Padua, Italy
[3] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
关键词
Kazdan-Warner equation; network; Kirchhoff condition; MEAN-FIELD GAMES; DIFFUSION-PROCESSES; CURVATURE; GRAPHS;
D O I
10.1515/acv-2020-0046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Kazdan-Warner equation on a network. In this case, the differential equation is defined on each edge, while appropriate transition conditions of Kirchhoff type are prescribed at the vertices. We show that the whole Kazdan-Warner theory, both for the noncritical and the critical case, extends to the present setting.
引用
收藏
页码:693 / 704
页数:12
相关论文
共 21 条
[1]   A CLASS OF INFINITE HORIZON MEAN FIELD GAMES ON NETWORKS [J].
Achdou, Yves ;
Dao, Manh-khang ;
Ley, Olivier ;
Tchou, Nicoletta .
NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (03) :537-566
[2]   NLS ground states on graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :743-761
[3]  
[Anonymous], 1994, Nonlinear waves in networks
[4]  
Barles G, 2022, Arxiv, DOI arXiv:1812.09197
[5]  
Berkolaiko G., 2013, Introduction to quantum graphs
[6]  
Brezis H., 1983, Analyse fonctionnelle. Collection Mathematiques Appliquees pour la Ma^itrise
[7]   STATIONARY MEAN FIELD GAMES SYSTEMS DEFINED ON NETWORKS [J].
Camilli, Fabio ;
Marchi, Claudio .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (02) :1085-1103
[8]   Gaussian curvature in the negative case [J].
Chen, WX ;
Li, CM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :741-744
[9]   Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs [J].
Dovetta, Simone ;
Serra, Enrico ;
Tilli, Paolo .
ADVANCES IN MATHEMATICS, 2020, 374
[10]   Diffusion processes on graphs: stochastic differential equations, large deviation principle [J].
Freidlin, M ;
Sheu, SJ .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (02) :181-220