Charge control of micro-particles in a shielded plasma afterglow

被引:30
作者
van Minderhout, B. [1 ]
van Huijstee, J. C. A. [1 ]
Platier, B. [1 ]
Peijnenburg, T. [2 ]
Blom, P. [2 ]
Kroesen, G. M. W. [1 ]
Beckers, J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] VDL Enabling Technol Grp, POB 80038, NL-5600 JW Eindhoven, Netherlands
关键词
plasma-assisted contamination control; complex plasma; spatial afterglow; particle charge control; COMPLEX; LIQUID;
D O I
10.1088/1361-6595/ab8e4f
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, charge control of micro-particles from similar to-40 to +10 elementary charges is presented. This is achieved at 0.9 mbar argon in the spatial afterglow of an inductively coupled plasma by solely changing the strength of an externally applied electric field. Crucial in the presented experiments is the use of a grounded mesh grid in the cross section of the setup, separating the active plasma region from the 'shielded'spatial afterglow. While in the regions above the mesh grid all particles reached a constant negative equilibrium charge, the actual control achieved in the shielded spatial afterglow can most probably be explained by variations of the local ion density. The achieved charge control not only opens up possibilities to study nano-scale surface charging physics on micro-meter length scales, it also contributes to the further development of plasma-based contamination control for ultra-clean low-pressure systems.
引用
收藏
页数:11
相关论文
共 53 条
[1]  
[Anonymous], 2015, PLASMA ELECT APPL MI
[2]   Particle charge in PK-4 dc discharge from ground-based and microgravity experiments [J].
Antonova, T. ;
Khrapak, S. A. ;
Pustylnik, M. Y. ;
Rubin-Zuzic, M. ;
Thomas, H. M. ;
Lipaev, A. M. ;
Usachev, A. D. ;
Molotkov, V. I. ;
Thoma, M. H. .
PHYSICS OF PLASMAS, 2019, 26 (11)
[3]   ION EXTRACTION FROM A PLASMA [J].
ASTON, G ;
WILBUR, PJ .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (04) :2614-2626
[4]   Dust grain charging in RF discharges [J].
Bacharis, M. ;
Coppins, M. ;
Allen, J. E. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (02)
[5]   Comparison of six simulation codes for positive streamers in air [J].
Bagheri, B. ;
Teunissen, J. ;
Ebert, U. ;
Becker, M. M. ;
Chen, S. ;
Ducasse, O. ;
Eichwald, O. ;
Loffhagen, D. ;
Luque, A. ;
Mihailova, D. ;
Plewa, J. M. ;
van Dijk, J. ;
Yousfi, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (09)
[6]   Absolute measurement of the total ion-drag force on a single plasma-confined microparticle at the void edge under microgravity conditions [J].
Beckers, J. ;
Trienekens, D. J. M. ;
Kroesen, G. M. W. .
PHYSICAL REVIEW E, 2013, 88 (05)
[7]   Microparticles in a Collisional Rf Plasma Sheath under Hypergravity Conditions as Probes for the Electric Field Strength and the Particle Charge [J].
Beckers, J. ;
Ockenga, T. ;
Wolter, M. ;
Stoffels, W. W. ;
van Dijk, J. ;
Kersten, H. ;
Kroesen, G. M. W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (11)
[8]   Temperature dependence of nucleation and growth of nanoparticles in low pressure Ar/CH4 RF discharges [J].
Beckers, J. ;
Stoffels, W. W. ;
Kroesen, G. M. W. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (15)
[9]   Precision charging of microparticles in plasma via the Rayleigh instability for evaporating charged liquid droplets [J].
Bennet, E. D. ;
Mahony, C. M. O. ;
Potts, H. E. ;
Everest, P. ;
Rutherford, D. ;
Askari, S. ;
McDowell, D. A. ;
Mariotti, D. ;
Kelsey, C. ;
Perez-Martin, F. ;
Hamilton, N. ;
Maguire, P. ;
Diver, D. A. .
JOURNAL OF AEROSOL SCIENCE, 2016, 100 :53-60
[10]  
Bouchoule A., 1999, DUSTY PLASMAS PHYS C, P1