A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences

被引:6
|
作者
He, Jian [1 ]
Wu, Yanling [1 ]
Pu, Xuemei [1 ]
Li, Menglong [1 ]
Guo, Yanzhi [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
leukemia; protein phosphorylation site; protein primary sequences; machine-learning; deep-learning; transfer-learning; BACTERIAL; MODEL; LOGO;
D O I
10.3390/ijms23031741
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As one of the most important post-translational modifications (PTMs), phosphorylation refers to the binding of a phosphate group with amino acid residues like Ser (S), Thr (T) and Tyr (Y) thus resulting in diverse functions at the molecular level. Abnormal phosphorylation has been proved to be closely related with human diseases. To our knowledge, no research has been reported describing specific disease-associated phosphorylation sites prediction which is of great significance for comprehensive understanding of disease mechanism. In this work, focusing on three types of leukemia, we aim to develop a reliable leukemia-related phosphorylation site prediction models by combing deep convolutional neural network (CNN) with transfer-learning. CNN could automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of leukemia-related phosphorylation site prediction. With the largest dataset of myelogenous leukemia, the optimal models for S/T/Y phosphorylation sites give the AUC values of 0.8784, 0.8328 and 0.7716 respectively. When transferred learning on the small size datasets, the models for T-cell and lymphoid leukemia also give the promising performance by common sharing the optimal parameters. Compared with other five machine-learning methods, our CNN models reveal the superior performance. Finally, the leukemia-related pathogenesis analysis and distribution analysis on phosphorylated proteins along with K-means clustering analysis and position-specific conversation profiles on the phosphorylation site all indicate the strong practical feasibility of our easy-to-use CNN models.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A Novel Deep Convolutional Neural Network Architecture Based on Transfer Learning for Handwritten Urdu Character Recognition
    Oziuddeen, Mohammed Aarif Kilvisharam
    Poruran, Sivakumar
    Caffiyar, Mohamed Yousuff
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (04): : 1160 - 1165
  • [22] Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
    Samala, Ravi K.
    Chan, Heang-Ping
    Hadjiiski, Lubomir
    Helvie, Mark A.
    Wei, Jun
    Cha, Kenny
    MEDICAL PHYSICS, 2016, 43 (12) : 6654 - 6666
  • [23] Deep Convolutional Neural Network (Falcon) and transfer learning-based approach to detect malarial parasite
    Banerjee, Tathagat
    Jain, Aditya
    Sethuraman, Sibi Chakkaravarthy
    Satapathy, Suresh Chandra
    Karthikeyan, S.
    Jubilson, Ajith
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13237 - 13251
  • [24] LPI Radar Waveform Recognition Based on Deep Convolutional Neural Network Transfer Learning
    Guo, Qiang
    Yu, Xin
    Ruan, Guoqing
    SYMMETRY-BASEL, 2019, 11 (04):
  • [25] A transfer learning-based deep convolutional neural network approach for induction machine multiple faults detection
    Kumar, Prashant
    Hati, Ananda Shankar
    Kumar, Prince
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (09) : 2380 - 2393
  • [26] An Eye State Recognition System Using Transfer Learning: AlexNet-Based Deep Convolutional Neural Network
    Ismail Kayadibi
    Gür Emre Güraksın
    Uçman Ergün
    Nurgül Özmen Süzme
    International Journal of Computational Intelligence Systems, 15
  • [27] An Eye State Recognition System Using Transfer Learning: AlexNet-Based Deep Convolutional Neural Network
    Kayadibi, Ismail
    Guraksin, Gur Emre
    Ergun, Ucman
    Ozmen Suzme, Nurgul
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [28] ACTL: Asymmetric Convolutional Transfer Learning for Tree Species Identification Based on Deep Neural Network
    Shi, Yun
    Ma, Donghui
    Lv, Jie
    Li, Jie
    IEEE ACCESS, 2021, 9 (09): : 13643 - 13654
  • [29] Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
    Ahmad Shalbaf
    Sara Bagherzadeh
    Arash Maghsoudi
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1229 - 1239
  • [30] Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
    Shalbaf, Ahmad
    Bagherzadeh, Sara
    Maghsoudi, Arash
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1229 - 1239