Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

被引:140
|
作者
Chen, Dong [1 ,2 ]
Li, Chengyin [1 ,2 ]
Liu, Hui [1 ]
Ye, Feng [1 ]
Yang, Jun [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
SILVER NANOPARTICLES; CARBON-MONOXIDE; ELECTROCATALYSTS; OXIDATION; METHANOL; HOLLOW; AG; REPLACEMENT; TRANSITION; DEPENDENCE;
D O I
10.1038/srep11949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass
    Haug, J.
    Kruth, H.
    Dubiel, M.
    Hofmeister, H.
    Haas, S.
    Tatchev, D.
    Hoell, A.
    NANOTECHNOLOGY, 2009, 20 (50)
  • [42] Self-healing Pd3Au@Pt/C core-shell electrocatalysts with substantially enhanced activity and durability towards oxygen reduction
    Lee, Sang -Young
    Jung, Namgee
    Shin, Dong Yun
    Park, Hee-Young
    Ahn, Docheon
    Kim, Hyoung-Juhn
    Jang, Jong Hyun
    Lim, Dong-Hee
    Yoo, Sung Jong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 : 666 - 674
  • [43] Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts
    Jeon, Beomjoon
    Kim, Daeho
    Kim, Taek-Seung
    Lee, Han-Koo
    Park, Jeong Young
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (45) : 52392 - 52400
  • [44] Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction
    Hsu, Chiajen
    Huang, Chienwen
    Hao, Yaowu
    Liu, Fuqiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (42) : 14696 - 14701
  • [45] Confining alloy or core-shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance
    Tan, Longfei
    Wu, Xiaoli
    Chen, Dong
    Liu, Huiyu
    Meng, Xianwei
    Tang, Fangqiong
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (35) : 10382 - 10388
  • [46] Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction
    Li, Xiaowei
    Liu, Juanying
    He, Wei
    Huang, Qinhong
    Yang, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 344 (01) : 132 - 136
  • [47] Synthesis, characterization, and femtosecond third-order optical nonlinearity of Au@Ag core-shell nanoparticles
    Lu, Heng
    Gu, Bing
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2022, 31 (01)
  • [48] Au-Pd Core-Shell Nanoparticles as Alcohol Oxidation Catalysts: Effect of Shape and Composition
    Cheong, Soshan
    Graham, Leah
    Brett, Gemma L.
    Henning, Anna M.
    Watt, John
    Miedziak, Peter J.
    Song, Minghui
    Takeda, Yoshihiko
    Taylor, Stuart H.
    Tilley, Richard D.
    CHEMSUSCHEM, 2013, 6 (10) : 1858 - 1862
  • [49] A facile route to model catalysts: the synthesis of Au@Pd core-shell nanoparticles on γ-Fe2O3 (0001)
    Davies, Robert J.
    Bowker, Michael
    Davies, Philip R.
    Morgan, David J.
    NANOSCALE, 2013, 5 (19) : 9018 - 9022
  • [50] Core-shell model for the magnetic properties of Pd nanoparticles
    Seehra, M. S.
    Rall, J. D.
    Liu, J. C.
    Roberts, C. B.
    MATERIALS LETTERS, 2012, 68 : 347 - 349