A variational approach to subdivision

被引:59
作者
Kobbelt, L
机构
[1] Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706-1685
关键词
D O I
10.1016/0167-8396(96)00007-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper a new class of interpolatory refinement schemes is presented which in every refinement step determine the new points by solving an optimization problem. In general, these schemes are global, i.e., every new point depends on all points of the polygon to be refined. By choosing appropriate quadratic functionals to be minimized iteratively during refinement, very efficient schemes producing limiting curves of high smoothness can be defined. The well known class of stationary interpolatory refinement schemes turns out to be a special case of these variational schemes.
引用
收藏
页码:743 / 761
页数:19
相关论文
共 17 条
  • [1] CAVARETTA AS, 1991, MEM AM MATH SOC, V93, P1
  • [2] CLEGG J, 1970, VARIATIONSRECHNUNG
  • [3] SYMMETRIC ITERATIVE INTERPOLATION PROCESSES
    DESLAURIERS, G
    DUBUC, S
    [J]. CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 49 - 68
  • [4] INTERPOLATION THROUGH AN ITERATIVE SCHEME
    DUBUC, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) : 185 - 204
  • [5] INTERPOLATORY CONVEXITY-PRESERVING SUBDIVISION SCHEMES FOR CURVES AND SURFACES
    DYN, N
    LEVIN, D
    LIU, D
    [J]. COMPUTER-AIDED DESIGN, 1992, 24 (04) : 211 - 216
  • [6] Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
  • [7] DYN N, 1990, MULTIVARIATE APPROXI
  • [8] DYN N, 1991, ADV NUMERICAL ANAL, V2
  • [9] Golub G, 2013, Matrix Computations, V4th
  • [10] KOBBELT L, 1995, ITERATIVE ERZEUGUNG