Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction

被引:31
作者
Goirand, Florian [1 ,2 ]
Le Borgne, Tanguy [1 ]
Lorthois, Sylvie [2 ]
机构
[1] Univ Rennes, CNRS, Geosci Rennes, UMR 6118, Rennes, France
[2] Univ Toulouse, CNRS, Inst Mecan Fluides Toulouse, UMR 5502, Toulouse, France
基金
欧洲研究理事会;
关键词
TRANSIT-TIME HETEROGENEITY; CEREBRAL-BLOOD-FLOW; ALZHEIMERS-DISEASE; CLEARANCE; MODEL; VESSELS; SYSTEMS; PLASMA;
D O I
10.1038/s41467-021-27534-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood microcirculation supplies neurons with oxygen and nutrients, and contributes to clearing their neurotoxic waste, through a dense capillary network connected to larger tree-like vessels. This complex microvascular architecture results in highly heterogeneous blood flow and travel time distributions, whose origin and consequences on brain pathophysiology are poorly understood. Here, we analyze highly-resolved intracortical blood flow and transport simulations to establish the physical laws governing the macroscopic transport properties in the brain micro-circulation. We show that network-driven anomalous transport leads to the emergence of critical regions, whether hypoxic or with high concentrations of amyloid-beta, a waste product centrally involved in Alzheimer's Disease. We develop a Continuous-Time Random Walk theory capturing these dynamics and predicting that such critical regions appear much earlier than anticipated by current empirical models under mild hypoperfusion. These findings provide a framework for understanding and modelling the impact of microvascular dysfunction in brain diseases, including Alzheimer's Disease. Blood microcirculation supplies neurons with oxygen and nutrients, and contributes to clearing their neurotoxic waste. Here, the authors analyse blood flow simulations to establish the physical laws linking the microvascular architecture to the macroscopic transport properties that control oxygen supply and waste clearance.
引用
收藏
页数:11
相关论文
共 79 条
[21]   Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study [J].
Eskildsen, Simon F. ;
Gyldensted, Louise ;
Nagenthiraja, Kartheeban ;
Nielsen, Rune B. ;
Hansen, Mikkel Bo ;
Dalby, Rikke B. ;
Frandsen, Jesper ;
Rodell, Anders ;
Gyldensted, Carsten ;
Jespersen, Sune N. ;
Lund, Torben E. ;
Mouridsen, Kim ;
Braendgaard, Hans ;
Ostergaard, Leif .
NEUROBIOLOGY OF AGING, 2017, 50 :107-118
[22]   Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation [J].
Gagnon, Louis ;
Smith, Amy F. ;
Boas, David A. ;
Devor, Anna ;
Secomb, Timothy W. ;
Sakadzic, Sava .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
[23]  
Goirand F, 2021, BRAIN MULTIPHYS, V2
[24]   Vascular Contributions to Cognitive Impairment and Dementia A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association [J].
Gorelick, Philip B. ;
Scuteri, Angelo ;
Black, Sandra E. ;
DeCarli, Charles ;
Greenberg, Steven M. ;
Iadecola, Costantino ;
Launer, Lenore J. ;
Laurent, Stephane ;
Lopez, Oscar L. ;
Nyenhuis, David ;
Petersen, Ronald C. ;
Schneider, Julie A. ;
Tzourio, Christophe ;
Arnett, Donna K. ;
Bennett, David A. ;
Chui, Helena C. ;
Higashida, Randall T. ;
Lindquist, Ruth ;
Nilsson, Peter M. ;
Roman, Gustavo C. ;
Sellke, Frank W. ;
Seshadri, Sudha .
STROKE, 2011, 42 (09) :2672-2713
[25]   The capillary bed offers the largest hemodynamic resistance to the cortical blood supply [J].
Gould, Ian Gopal ;
Tsai, Philbert ;
Kleinfeld, David ;
Linninger, Andreas .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (01) :52-68
[26]   Disturbances in the control of capillary flow in an aged APPswe/PS1ΔE9 model of Alzheimer's disease [J].
Gutierrez-Jimenez, Eugenio ;
Angleys, Hugo ;
Rasmussen, Peter M. ;
West, Mark J. ;
Catalini, Laura ;
Iversen, Nina K. ;
Jensen, Morten S. ;
Frische, Sebastian ;
Ostergaard, Leif .
NEUROBIOLOGY OF AGING, 2018, 62 :82-94
[27]   Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH) [J].
Gutierrez-Jimenez, Eugenio ;
Cai, Changsi ;
Mikkelsen, Irene Klaerke ;
Rasmussen, Peter Mondrup ;
Angleys, Hugo ;
Merrild, Mads ;
Mouridsen, Kim ;
Jespersen, Sune Norhoj ;
Lee, Jonghwan ;
Iversen, Nina Kerting ;
Sakadzic, Sava ;
Ostergaard, Leif .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 (12) :2072-2086
[28]   Does pathology of small venules contribute to cerebral microinfarcts and dementia? [J].
Hartmann, David A. ;
Hyacinth, Hyacinth I. ;
Liao, Francesca-Fang ;
Shih, Andy Y. .
JOURNAL OF NEUROCHEMISTRY, 2018, 144 (05) :517-526
[29]   Voxelized simulation of cerebral oxygen perfusion elucidates hypoxia in aged mouse cortex [J].
Hartung, Grant ;
Badr, Shoale ;
Moeini, Mohammad ;
Lesage, Frederic ;
Kleinfeld, David ;
Alaraj, Ali ;
Linninger, Andreas .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (01)
[30]   Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models [J].
Hernandez, Jean C. Cruz ;
Bracko, Oliver ;
Kersbergen, Calvin J. ;
Muse, Victorine ;
Haft-Javaherian, Mohammad ;
Berg, Maxime ;
Park, Laibaik ;
Vinarcsik, Lindsay K. ;
Ivasyk, Iryna ;
Rivera, Daniel A. ;
Kang, Yiming ;
Cortes-Canteli, Marta ;
Peyrounette, Myriam ;
Doyeux, Vincent ;
Smith, Amy ;
Zhou, Joan ;
Otte, Gabriel ;
Beverly, Jeffrey D. ;
Davenport, Elizabeth ;
Davit, Yohan ;
Lin, Charles P. ;
Strickland, Sidney ;
Iadecola, Costantino ;
Lorthois, Sylvie ;
Nishimura, Nozomi ;
Schaffer, Chris B. .
NATURE NEUROSCIENCE, 2019, 22 (03) :413-+