The finite-time ruin probability of the compound Poisson model with constant interest force

被引:88
作者
Tang, QH [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
asymptotics; finite-time ruin probability; Poisson process; regular variation; subexponentiality; uniform asymptotics; uniform convergence;
D O I
10.1239/jap/1127322015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish a simple asymptotic formula for the finite-time ruin probability of the compound Poisson model with constant interest force and subexponential claims in the case that the initial surplus is large. The formula is consistent with known results for the ultimate ruin probability and, in particular, is uniform for all time horizons when the claim size distribution is regularly varying tailed.
引用
收藏
页码:608 / 619
页数:12
相关论文
共 20 条
[1]   A local limit theorem for random walk maxima with heavy tails [J].
Asmussen, S ;
Kalashnikov, V ;
Konstantinides, D ;
Klüppelberg, C ;
Tsitsiashvili, G .
STATISTICS & PROBABILITY LETTERS, 2002, 56 (04) :399-404
[2]  
Asmussen S, 1998, ANN APPL PROBAB, V8, P354
[3]  
Athreya K.B., 1972, BRANCHING PROCESS
[4]  
Bingham N. H., 1987, Regular Variation
[5]   SUBEXPONENTIALITY OF THE PRODUCT OF INDEPENDENT RANDOM-VARIABLES [J].
CLINE, DBH ;
SAMORODNITSKY, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 49 (01) :75-98
[6]   SUBEXPONENTIALITY AND INFINITE DIVISIBILITY [J].
EMBRECHTS, P ;
GOLDIE, CM ;
VERAVERBEKE, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03) :335-347
[7]   A PROPERTY OF LONGTAILED DISTRIBUTIONS [J].
EMBRECHTS, P ;
OMEY, E .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (01) :80-87
[8]   Ruin under interest force and subexponential claims: a simple treatment [J].
Kalashnikov, V ;
Konstantinides, D .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (01) :145-149
[9]  
Kl├a┬╝ppelberg C., 1998, SCAND ACTUAR J, V1998, P49, DOI [10.1080/03461238.1998.10413991, DOI 10.1080/03461238.1998.10413991]
[10]  
Kl├a┬╝ppelberg P.C., 1997, MODELLING EXTREMAL E