Existence of positive solutions for fractional Kirchhoff equation

被引:5
作者
Wu, Ke [1 ]
Gu, Guangze [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 02期
基金
中国国家自然科学基金;
关键词
Uniqueness; Positive solutions; Nonlocal operator; SCALAR FIELD-EQUATIONS; NONLINEAR SCHRODINGER-EQUATION; GROUND-STATE SOLUTIONS; LAPLACIAN;
D O I
10.1007/s00033-021-01669-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Kirchhoff equation involving fractional Laplacian in R-N. (a + b integral R-N x R-N vertical bar u(x) - u(y)vertical bar(2/vertical bar)x - y vertical bar(N + 2s)dxdy) (-Delta)(s)u + uc = g(u), (K) where N >= 2, a >= 0, b, mu > 0, 0 < s < 1, and (-Delta)s is the fractional Laplacian with order s. By reducing (K) to an equivalent system, we obtain the existence of a positive solution of (K) with general nonlinearities. The positive solution is unique if g(u) = vertical bar u vertical bar(p-1)u, 1 < p < N+2s/N-2s. Moreover, if the function g is odd, the existence of infinitely many (sign-changing) solutions is concluded. As we shall see, for the case where 0 < s <= N/4, a necessary condition of existence of nontrivial solutions of (K) is that b is small. Our method works well for the so-called degenerate case a = 0.
引用
收藏
页数:13
相关论文
共 24 条
[1]   A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
[2]   Existence and stability of standing waves for nonlinear fractional Schrodinger equation with logarithmic nonlinearity [J].
Ardila, Alex H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 :52-64
[3]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[6]   An Existence Result for Fractional Kirchhoff-Type Equations [J].
Bisci, Giovanni Molica ;
Tulone, Francesco .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02) :181-197
[7]   Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations [J].
Caponi, Maicol ;
Pucci, Patrizia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2099-2129
[8]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[9]   Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian [J].
Chang, Xiaojun ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2965-2992
[10]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262