On the nonlinear dynamics of an ecoepidemic reaction-diffusion model

被引:6
作者
Capone, Florinda [1 ]
De Luca, Roberta [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat Renato Caccioppoli, Via Cinzia 80126, Naples, Italy
关键词
Ecoepidemic models; Absorbing sets; Stability; PREDATOR-PREY MODELS; STABILITY; DISEASE; EPIDEMICS;
D O I
10.1016/j.ijnonlinmec.2017.07.009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A reaction diffusion ecoepidemic model of predator prey type with a transmissible disease spreading among the predator species only is considered. The longtime behavior of solutions is analyzed and, in particular, absorbing sets in the phase space are determined. Conditions guaranteeing the non existence of non-constant equilibria have been found. Linear and non-linear stability conditions for biologically meaningful equilibria are determined. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 27 条
[1]  
[Anonymous], B UNIONE MAT ITAL
[2]  
[Anonymous], ABSTR APPL AN
[3]  
[Anonymous], MAXIMUM PRINCIPLES H
[4]  
[Anonymous], MATH METHODS APPL SC
[5]  
Cantrell RS., 2004, Spatial Ecology via ReactionDiffusion Equations
[6]   On the stability of non-autonomous perturbed Lotka-Volterra models [J].
Capone, F. ;
De Luca, R. ;
Rionero, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :6868-6881
[7]   Global Stability for a Binary Reaction-Diffusion Lotka-Volterra Model with Ratio-Dependent Functional Response [J].
Capone, Florinda ;
De Luca, Roberta .
ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) :151-163
[10]  
Evans Lawrence C., 2010, Graduate Studies in Mathematics, V19, DOI [10.1090/gsm/019, DOI 10.1090/GSM/019]