Data-driven state-of-charge estimation of the Panasonic 18650PF Li-ion cell using deep forward neural networks

被引:1
作者
de Lima, Alexandre B. [1 ]
Salles, Mauricio B. C. [1 ]
Cardoso, Jose Roberto [1 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Dept Energy & Automat, Sao Paulo, Brazil
来源
2021 14TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON) | 2021年
关键词
Deep Learning; Electrical Energy Storage; Li-ion battery; State-of-Charge; BATTERY; MODEL;
D O I
10.1109/INDUSCON51756.2021.9529774
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The State-of-Charge (SOC) is a key parameter for the proper functioning of the Battery Management System (BMS) of lithium-ion (Li-ion) batteries, and indicates the amount of charge remaining in the battery. In this work, we present a novel empirical study for the data-driven estimation of the SOC of the Panasonic 18650PF Li-ion cell using Deep Forward Neural Networks (DFNN) and optimization algorithms with adaptive learning rates. Specifically, we model the Urban Dynamometer Driving Schedule (UDDS) drive cycle. Our results suggest that the choice of the optimization algorithm affects the performance of the model and that a DFNN with five hidden layers is the model of optimal capacity when considering 256 units per layer. This optimal DFNN is able to estimate the SOC of the 18650PF Li-ion cell with an error smaller than 0:12% over a 25 degrees C dataset using the Adamax optimization algorithm.
引用
收藏
页码:1546 / 1550
页数:5
相关论文
共 33 条
[1]  
Aggarwal C.C., 2018, Neural networks and deep learning, V10, DOI 10.1007/978-3-319-94463-0
[2]   Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Alvi, Muhammad Junaid ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (03)
[3]  
Allaire, 2018, DEEP LEARNING WITH R
[4]   Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA [J].
Chang, Wen-Yeau .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 53 :603-611
[5]   State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF [J].
Charkhgard, Mohammad ;
Farrokhi, Mohammad .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4178-4187
[6]   State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Emadi, Ali .
JOURNAL OF POWER SOURCES, 2018, 400 :242-255
[7]   State of charge estimation for Li-ion battery based on model from extreme learning machine [J].
Du, Jiani ;
Liu, Zhitao ;
Wang, Youyi .
CONTROL ENGINEERING PRACTICE, 2014, 26 :11-19
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]   Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques [J].
Hannan, M. A. ;
Lipu, M. S. Hossain ;
Hussain, Aini ;
Ker, Pin Jern ;
Mahlia, T. M., I ;
Mansor, M. ;
Ayob, Afida ;
Saad, Mohamad H. ;
Dong, Z. Y. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach [J].
How, Dickshon N. T. ;
Hannan, Mahammad A. ;
Lipu, Molla S. Hossain ;
Sahari, Khairul S. M. ;
Ker, Pin Jern ;
Muttaqi, Kashem M. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) :5565-5574