Stein fillings of homology 3-spheres and mapping class groups

被引:1
作者
Oba, Takahiro [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
关键词
Stein fillings; Contact; 3-manifolds; Lefschetz fibrations; Supporting open books; Mapping class groups; PLANAR OPEN BOOKS; SIMPLE SINGULARITIES; SYMPLECTIC FILLINGS; SURFACES;
D O I
10.1007/s10711-016-0146-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, using combinatorial techniques of mapping class groups, we show that a Stein fillable integral homology 3-sphere supported by an open book with page a 4-holed sphere admits a unique Stein filling up to symplectic deformation. Furthermore, according to a property of deforming symplectic fillings of rational homology 3-spheres into strong symplectic fillings, we also show that a symplectically fillable integral homology 3-sphere supported by an open book with page a 4-holed sphere admits a unique symplectic filling up to symplectic deformation and blow-up.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 29 条
[1]   Lefschetz fibrations on compact Stein surfaces [J].
Akbulut, Selman ;
Ozbagci, Burak .
GEOMETRY & TOPOLOGY, 2001, 5 :319-334
[2]  
ELIASHBERG Y., 1991, Proc. Sympos. Pure Math., V52, P135, DOI [10.1090/pspum/052.2/1128541, DOI 10.1090/PSPUM/052.2/1128541]
[3]  
Eliashberg Y., 1990, Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory, V2, P45, DOI DOI 10.1017/CBO9780511629341.006
[4]  
Eliashberg Y., 1990, INT J MATH, V1, P29, DOI 10.1142/S0129167X90000034
[5]  
Etnyre J., 2006, CLAY MATH P AM MATH, V5
[6]  
Etnyre JB, 2004, INT MATH RES NOTICES, V2004, P4255
[7]  
Farb B., 2012, PRINCETON MATH SERIE, V49
[8]  
Geiges H, 2008, CAMBRIDGE STUD ADV M, V109
[9]  
Giroux E., 2001, P INT C MATH, VII, P405
[10]  
Gompf R. E., 1999, GRAD STUD MATH, V20