Monocrystalline Silicon Carbide Disk Resonators on Phononic Crystals with Ultra-Low Dissipation Bulk Acoustic Wave Modes

被引:28
作者
Hamelin, Benoit [1 ]
Yang, Jeremy [2 ]
Daruwalla, Anosh [1 ]
Wen, Haoran [1 ]
Ayazi, Farrokh [1 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, 777 Atlantic Dr NW, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
GYROSCOPES;
D O I
10.1038/s41598-019-54278-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Micromechanical resonators with ultra-low energy dissipation are essential for a wide range of applications, such as navigation in GPS-denied environments. Routinely implemented in silicon (Si), their energy dissipation often reaches the quantum limits of Si, which can be surpassed by using materials with lower intrinsic loss. This paper explores dissipation limits in 4H monocrystalline silicon carbide-on-insulator (4H-SiCOI) mechanical resonators fabricated at wafer-level, and reports on ultra-high quality-factors (Q) in gyroscopic-mode disk resonators. The SiC disk resonators are anchored upon an acoustically-engineered Si substrate containing a phononic crystal which suppresses anchor loss and promises QANCHOR near 1 Billion by design. Operating deep in the adiabatic regime, the bulk acoustic wave (BAW) modes of solid SiC disks are mostly free of bulk thermoelastic damping. Capacitively-transduced SiC BAW disk resonators consistently display gyroscopic m = 3 modes with Q-factors above 2 Million (M) at 6.29 MHz, limited by surface TED due to microscale roughness along the disk sidewalls. The surface TED limit is revealed by optical measurements on a SiC disk, with nanoscale smooth sidewalls, exhibiting Q = 18 M at 5.3 MHz, corresponding to f.Q = 9.10(13) Hz, a 5-fold improvement over the Akhiezer limit of Si. Our results pave the path for integrated SiC resonators and resonant gyroscopes with Q-factors beyond the reach of Si.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Abdolvand R., 2008, ZNO ON NANOCRYSTALLI, P795, DOI [10.1109/memsys.2007.4433131, DOI 10.1109/MEMSYS.2007.4433131]
  • [2] Ayazi F., 2011, TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, P2805, DOI 10.1109/TRANSDUCERS.2011.5969885
  • [3] Energy Dissipation in Micromechanical Resonators
    Ayazi, Farrokh
    Sorenson, Logan
    Tabrizian, Roozbeh
    [J]. MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [4] Braginsky V., 2005, AM J PHYS, V55, P1153, DOI [10.1119/1.15272, DOI 10.1119/1.15272]
  • [5] Multimode thermoelastic dissipation
    Chandorkar, Saurabh A.
    Candler, Robert N.
    Duwel, Amy
    Melamud, Renata
    Agarwal, Manu
    Goodson, Kenneth E.
    Kenny, Thomas W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (04)
  • [6] Cook E., 2018, 2018 SOL STAT ACT MI, P364, DOI [10.31438/trf.hh2018.102, DOI 10.31438/TRF.HH2018.102]
  • [7] Daruwalla A, 2018, PROC IEEE MICR ELECT, P1008, DOI 10.1109/MEMSYS.2018.8346729
  • [8] Profile Evolution of High Aspect Ratio Silicon Carbide Trenches by Inductive Coupled Plasma Etching
    Dowling, Karen M.
    Ransom, Elliot H.
    Senesky, Debbie G.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (01) : 135 - 142
  • [9] Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators
    Ghaffari, Shirin
    Chandorkar, Saurabh A.
    Wang, Shasha
    Ng, Eldwin J.
    Ahn, Chae H.
    Vu Hong
    Yang, Yushi
    Kenny, Thomas W.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [10] Hamelin B., 2017, P IEEE INT C MICR EL, DOI [10.1109/MEMSYS.2017.7863614, DOI 10.1109/MEMSYS.2017.7863614]