Bounded p-valent Robertson functions defined by using a differential operator

被引:9
作者
Aouf, M. K. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2010年 / 347卷 / 10期
关键词
D O I
10.1016/j.jfranklin.2010.10.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let F(M)(lambda, alpha, p, q)(M>1/2,vertical bar lambda vertical bar<pi/2,0 <=alpha<p-q,p is an element of N,q is an element of N(0),p > q) denote the class of functions f(z) = z(p) + Sigma(infinity)(k=p)(+1) a(k)z(k) analytic in U ={z : |z| < 1} which satisfy for fixed M, z = re(i theta) is an element of U and |e(i lambda)zf((1+q))(z)/f((q))(z)-alpha cos lambda-i(p-q)sin lambda/(p-q-alpha)cos lambda-M| < M. Also let G(M)(lambda, alpha, p, q)(M>1/2,vertical bar lambda vertical bar<pi/2,0 <=alpha<p-q,p is an element of N,q is an element of N(0),p > q) denote the class of bounded p-valent lambda-Robertson functions of order alpha, 0 <= alpha < p-q, that is g((q))(z) is an element of G(M)(lambda, alpha, p, q) if and only if (zg((1+q))(z)/(p-q)) is an element of F(M)(lambda, alpha, p, q). In this paper we investigate certain properties of the above-mentioned classes. (C) 2010 The Franklin Institute. Published Elsevier Ltd. All rights reserved.
引用
收藏
页码:1927 / 1941
页数:15
相关论文
共 10 条
[1]   Certain subclasses of p-valent starlike functions defined by using a differential operator [J].
Aouf, M. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :867-875
[2]  
AOUF MK, 1985, INDIAN J PURE AP MAT, V16, P775
[3]  
CHEN MP, 1996, PAN AM MATH J, V6, P55
[4]  
Cluine J.G., 1959, J LOND MATH SOC, V34, P215
[5]   A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS [J].
KEOGH, FR ;
MERKES, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) :8-&
[6]  
Kulshrestha P. K., 1976, REND MAT, V9, P137
[7]  
Patil DA., 1979, INDIAN J PURE APPL M, V10, P842
[8]  
Singh R., 1968, J INDIAN MATH SOC NE, V32, P208
[9]  
Singh R., 1974, INDIAN J PURE APPL M, V5, P733, DOI DOI 10.3390/MATH7080670
[10]  
Srivastava HM., 1990, B SOC MATH BELG TI B, V42, P31