Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation

被引:27
作者
He, Bin [1 ]
Meng, Qing [2 ]
Li, Shaolin [1 ]
机构
[1] Honghe Univ, Coll Math, Mengzi 661100, Yunnan, Peoples R China
[2] Honghe Univ, Dept Phys, Mengzi 661100, Yunnan, Peoples R China
关键词
Modified Fornberg-Whitham equation; Peakon; Solitary wave; Exact solution in explicit form; MODIFIED CAMASSA-HOLM; DEGASPERIS-PROCESI; MODIFIED FORMS;
D O I
10.1016/j.amc.2010.06.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the modified Fornberg-Whitham equation is studied by using the bifurcation theory and the method of phase portraits analysis. In some parametric conditions, some peakons and solitary waves are found and their exact parametric representations in explicit form are obtained. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1976 / 1982
页数:7
相关论文
共 25 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition [J].
Chen, Aiyong ;
Li, Jibin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) :758-766
[3]   Travelling wave solutions of the Fornberg-Whitham equation [J].
Chen, Aiyong ;
Li, Jibin ;
Deng, Xijun ;
Huang, Wentao .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) :3068-3075
[4]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[5]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61
[6]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431
[7]   Inverse scattering transform for the Camassa-Holm equation [J].
Constantin, Adrian ;
Gerdjikov, Vladimir S. ;
Ivanov, Rossen I. .
INVERSE PROBLEMS, 2006, 22 (06) :2197-2207
[8]   The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations [J].
Constantin, Adrian ;
Lannes, David .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (01) :165-186
[9]   A new integrable equation with peakon solutions [J].
Degasperis, A ;
Holm, DD ;
Hone, ANW .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) :1463-1474
[10]  
Degasperis A., 1999, Symmetry and perturbation theory, P23