Existence and nonexistence of nontrivial weak solution for a class of general capillarity systems

被引:1
作者
Afrouzi, G. A. [1 ]
Chung, N. T. [2 ]
Naghizadeh, Z. [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] Quang Binh Univ, Dept Math, Dong Hoi, Quang Binh, Vietnam
关键词
weak solutions; nonexistence; multiplicity; capillarity systems; variational methods; Q-LAPLACIAN PROBLEM;
D O I
10.1007/s10255-014-0444-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the nonexistence and existence of nonnegative, nontrivial weak solution for a class of general capillarity systems. The proofs rely essentially on the minimum principle combined with the mountain pass theorem.
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 20 条
[1]  
Afrouzi G. A., 2011, AUST J BASIC APPL SC, V5, P1313
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1992, THEORIE APPL
[4]  
Arruda LK, 2011, DISCRETE CONT DYN-A, V31, P112
[5]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[6]  
Bonder J. F., 2004, Abstract and Applied Analysis, V2004, P1047, DOI 10.1155/S1085337504403078
[7]   EXISTENCE RESULTS FOR PERTURBATIONS OF THE P-LAPLACIAN [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (03) :409-418
[8]  
doO JMB, 1997, J MATH ANAL APPL, V207, P104
[9]   Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :507-518
[10]   The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in RN [J].
He, Chengjun ;
Li, Gongbao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) :1100-1119