TILTING BUNDLES ON ORDERS ON Pd

被引:11
作者
Iyama, Osamu [1 ]
Lerner, Boris [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
REPRESENTATION-THEORY; CATEGORIES; SHEAVES;
D O I
10.1007/s11856-015-1263-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of orders on P-d called Geigle-Lenzing orders and show that they have tilting bundles. Moreover we show that their module categories are equivalent to the categories of coherent sheaves on Geigle-Lenzing projective spaces introduced in [HIMO].
引用
收藏
页码:147 / 169
页数:23
相关论文
共 28 条
[1]  
[Anonymous], ARXIV09114473
[2]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[3]   NONCOMMUTATIVE PROJECTIVE SCHEMES [J].
ARTIN, M ;
ZHANG, JJ .
ADVANCES IN MATHEMATICS, 1994, 109 (02) :228-287
[4]   TILTING SHEAVES IN REPRESENTATION-THEORY OF ALGEBRAS [J].
BAER, D .
MANUSCRIPTA MATHEMATICA, 1988, 60 (03) :323-347
[5]  
Beilinson A.A., 1978, Funct. Anal. Appl., V12, P214, DOI 10.1007/BF01681436
[6]   On the derived category of Grassmannians in arbitrary characteristic [J].
Buchweitz, Ragnar-Olaf ;
Leuschke, Graham J. ;
Van den Bergh, Michel .
COMPOSITIO MATHEMATICA, 2015, 151 (07) :1242-1264
[7]   Tilting on non-commutative rational projective curves [J].
Burban, Igor ;
Drozd, Yuriy .
MATHEMATISCHE ANNALEN, 2011, 351 (03) :665-709
[8]   Non-commutative coordinate rings and stacks [J].
Chan, D ;
Ingalls, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 :63-88
[9]   Extensions of covariantly finite subcategories [J].
Chen, Xiao-Wu .
ARCHIV DER MATHEMATIK, 2009, 93 (01) :29-35
[10]  
GEIGLE W, 1987, LECT NOTES MATH, V1273, P265