HONEST CONFIDENCE SETS IN NONPARAMETRIC IV REGRESSION AND OTHER ILL-POSED MODELS

被引:11
作者
Babii, Andrii [1 ]
机构
[1] Univ North Carolina Chapel Hill, Gardner Hall,CB 3305, Chapel Hill, NC 27599 USA
关键词
INSTRUMENTAL VARIABLE ESTIMATION; INVERSE PROBLEMS; ENGEL CURVES; DECONVOLUTION; RATES; BANDS; REGULARIZATION; CONVERGENCE; INFERENCE; SUPREMA;
D O I
10.1017/S0266466619000380
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article develops inferential methods for a very general class of ill-posed models in econometrics encompassing the nonparametric instrumental variable regression, various functional regressions, and the density deconvolution. We focus on uniform confidence sets for the parameter of interest estimated with Tikhonov regularization, as in Darolles et al. (2011,Econometrica79, 1541-1565). Since it is impossible to have inferential methods based on the central limit theorem, we develop two alternative approaches relying on the concentration inequality and bootstrap approximations. We show that expected diameters and coverage properties of resulting sets have uniform validity over a large class of models, that is, constructed confidence sets are honest. Monte Carlo experiments illustrate that introduced confidence sets have reasonable width and coverage properties. Using U.S. data, we provide uniform confidence sets for Engel curves for various commodities.
引用
收藏
页码:658 / 706
页数:49
相关论文
共 54 条
[1]   NONPARAMETRIC INSTRUMENTAL REGRESSION WITH ERRORS IN VARIABLES [J].
Adusumilli, Karun ;
Otsu, Taisuke .
ECONOMETRIC THEORY, 2018, 34 (06) :1256-1280
[2]   International Income Inequality: Measuring PPP Bias by Estimating Engel Curves for Food [J].
Almas, Ingvild .
AMERICAN ECONOMIC REVIEW, 2012, 102 (02) :1093-1117
[3]  
[Anonymous], 2016, Concentration inequalities. A nonasymptotic theory of independence
[4]  
[Anonymous], 2016, CAMBRIDGE SERIES STA
[5]  
BABII A, 2018, IS COMPLETENESS NECE
[6]  
Babii A., 2017, IDENTIFICATION ESTIM
[7]   Quadratic engel curves and consumer demand [J].
Banks, J ;
Blundell, R ;
Lewbel, A .
REVIEW OF ECONOMICS AND STATISTICS, 1997, 79 (04) :527-539
[8]   Some new asymptotic theory for least squares series: Pointwise and uniform results [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Chetverikov, Denis ;
Kato, Kengo .
JOURNAL OF ECONOMETRICS, 2015, 186 (02) :345-366
[9]   Functional linear regression with functional response [J].
Benatia, David ;
Carrasco, Marine ;
Florens, Jean-Pierre .
JOURNAL OF ECONOMETRICS, 2017, 201 (02) :269-291
[10]   Non-parametric confidence bands in deconvolution density estimation [J].
Bissantz, Nicolai ;
Dumbgen, Lutz ;
Holzmann, Hajo ;
Munk, Axel .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :483-506