RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality

被引:22
作者
Borrel, Alexandre [1 ]
Fourches, Denis [1 ]
机构
[1] North Carolina State Univ, Dept Chem, Bioinformat Res Ctr, Box 8204, Raleigh, NC 27695 USA
关键词
D O I
10.1093/bioinformatics/btx485
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Results: Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications.
引用
收藏
页码:3816 / 3818
页数:3
相关论文
共 9 条
[1]   3D-Lab: a collaborative web-based platform for molecular modeling [J].
Grebner, Christoph ;
Norrby, Magnus ;
Enstrom, Jonatan ;
Nilsson, Ingemar ;
Hogner, Anders ;
Henriksson, Jonas ;
Westin, Johan ;
Faramarzi, Farzad ;
Werner, Philip ;
Bostrom, Jonas .
FUTURE MEDICINAL CHEMISTRY, 2016, 8 (14)
[2]   One-click preparation of 3D print files (*.stl, *.wrl) from *.cif (crystallographic information framework) data using Cif2VRML [J].
Kaminsky, Werner ;
Snyder, Trevor ;
Stone-Sundberg, Jennifer ;
Moeck, Peter .
POWDER DIFFRACTION, 2014, 29 :S42-S47
[3]   DrugBank 4.0: shedding new light on drug metabolism [J].
Law, Vivian ;
Knox, Craig ;
Djoumbou, Yannick ;
Jewison, Tim ;
Guo, An Chi ;
Liu, Yifeng ;
Maciejewski, Adam ;
Arndt, David ;
Wilson, Michael ;
Neveu, Vanessa ;
Tang, Alexandra ;
Gabriel, Geraldine ;
Ly, Carol ;
Adamjee, Sakina ;
Dame, Zerihun T. ;
Han, Beomsoo ;
Zhou, You ;
Wishart, David S. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1091-D1097
[4]   Augmented Reality in Education and Training [J].
Lee, Kangdon .
TECHTRENDS, 2012, 56 (02) :13-21
[5]   Molecular Rift: Virtual Reality for Drug Designers [J].
Norrby, Magnus ;
Grebner, Christoph ;
Eriksson, Joakim ;
Bostrom, Jonas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (11) :2475-2484
[6]   Open Babel: An open chemical toolbox [J].
O'Boyle, Noel M. ;
Banck, Michael ;
James, Craig A. ;
Morley, Chris ;
Vandermeersch, Tim ;
Hutchison, Geoffrey R. .
JOURNAL OF CHEMINFORMATICS, 2011, 3
[7]   Programmatic conversion of crystal structures into 3D printable files using Jmol [J].
Scalfani, Vincent F. ;
Williams, Antony J. ;
Tkachenko, Valery ;
Karapetyan, Karen ;
Pshenichnov, Alexey ;
Hanson, Robert M. ;
Liddie, Jahred M. ;
Bara, Jason E. .
JOURNAL OF CHEMINFORMATICS, 2016, 8 :1-8
[8]   Smart Phones, a Powerful Tool in the Chemistry Classroom [J].
Williams, Antony J. ;
Pence, Harry E. .
JOURNAL OF CHEMICAL EDUCATION, 2011, 88 (06) :683-686
[9]   ChemPreview: an augmented reality-based molecular interface [J].
Zheng, Min ;
Waller, Mark P. .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2017, 73 :18-23