Ciprofloxacin promotes polarization of CD86+CD206- macrophages to suppress liver cancer

被引:23
作者
Fan, Mengtian [1 ]
Chen, Sicheng [2 ]
Weng, Yaguang [1 ]
Li, Xian [3 ]
Jiang, Yingjiu [2 ]
Wang, Xiaowen [2 ]
Bie, Mengjun [2 ]
An, Liqin [1 ]
Zhang, Menghao [1 ]
Chen, Bin [1 ]
Huang, Gaigai [1 ]
Wu, Jinghong [1 ]
Zhu, Mengying [1 ]
Shi, Qiong [1 ]
机构
[1] Chongqing Med Univ, Sch Lab Med, Minist Educ, Key Lab Diagnost Med, 1 Med Sch Rd, Chongqing 400016, Peoples R China
[2] Chongqing Med Univ, Affiliated Hosp 1, Dept Cardiothorac Surg, Chongqing 400016, Peoples R China
[3] Chongqing Med Univ, Affiliated Hosp 1, Dept Pathol, Chongqing 400016, Peoples R China
关键词
cancer; liver; ciprofloxacin; macrophages; CD86(+)CD206(-); HEPATOCELLULAR-CARCINOMA; TUMOR MICROENVIRONMENT; CELLS; INFLAMMATION; RESISTANCE; THERAPY; PERSPECTIVES; HOMEOSTASIS; MICROBIOME; INVASION;
D O I
10.3892/or.2020.7602
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gut microbiota can promote tumor development by producing toxic metabolites and inhibiting the function of immune cells. Previous studies have demonstrated that gut microbiota can reach the liver through the circulation and promote the occurrence of liver cancer. Ciprofloxacin, an effective broad-spectrum antimicrobial agent, can promote cell apoptosis and regulate the function of immune cells. As an important part of the tumor microenvironment, macrophages play an important role in tumor regulation. The present study demonstrated that the treatment of macrophages with ciprofloxacin was able to promote the production of interleukin-1 beta, tumor necrosis factor-alpha and the polarization of CD86(+)CD206(-) macrophages, while inhibiting the polarization of CD86(-)CD206(+) macrophages. This transformation may help macrophages promote tumor cell apoptosis, inhibit tumor cell proliferation, reduce metastasis and downregulate the phosphoinositide 3-kinase/AKT signaling pathway in liver cancer cell lines. In vivo experiments demonstrated that macrophages treated with ciprofloxacin inhibited the growth of subcutaneous implanted tumors in nude mice. In conclusion, the findings of the present study indicated that ciprofloxacin may inhibit liver cancer by upregulating the expression of CD86(+)CD206(-) macrophages. This study further revealed the biological mechanism underlying the potential value of ciprofloxacin in antitumor therapy and provided new targets for the treatment of liver cancer.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 55 条
[1]   Mechanism of Quinolone Action and Resistance [J].
Aldred, Katie J. ;
Kerns, Robert J. ;
Osheroff, Neil .
BIOCHEMISTRY, 2014, 53 (10) :1565-1574
[2]   Ciprofloxacin and ceftriaxone alter cytokine responses, but not Toll-like receptors, to Salmonella infection in vitro [J].
Anuforom, Olachi ;
Wallace, Graham R. ;
Buckner, Michelle M. C. ;
Piddock, Laura J. V. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2016, 71 (07) :1826-1833
[3]   Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway [J].
Beberok, Artur ;
Wrzesniok, Dorota ;
Rok, Jakub ;
Rzepka, Zuzanna ;
Respondek, Michalina ;
Buszman, Ewa .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2018, 52 (05) :1727-1737
[4]   NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control [J].
Boettcher, Jan P. ;
Bonavita, Eduardo ;
Chakravarty, Probir ;
Blees, Hanna ;
Cabeza-Cabrerizo, Mar ;
Sammicheli, Stefano ;
Rogers, Neil C. ;
Sahai, Erik ;
Zelenay, Santiago ;
Reis e Sousa, Caetano .
CELL, 2018, 172 (05) :1022-+
[5]   Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration [J].
Bray, F. ;
Ferlay, J. ;
Laversanne, M. ;
Brewster, D. H. ;
Mbalawa, C. Gombe ;
Kohler, B. ;
Pineros, M. ;
Steliarova-Foucher, E. ;
Swaminathan, R. ;
Antoni, S. ;
Soerjomataram, I. ;
Forman, D. .
INTERNATIONAL JOURNAL OF CANCER, 2015, 137 (09) :2060-2071
[6]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[7]   Human primary liver cancer-derived organoid cultures for disease modeling and drug screening [J].
Broutier, Laura ;
Mastrogiovanni, Gianmarco ;
Verstegen, Monique M. A. ;
Francies, Hayley E. ;
Gavarro, Lena Morrill ;
Bradshaw, Charles R. ;
Allen, George E. ;
Arnes-Benito, Robert ;
Sidorova, Olga ;
Gaspersz, Marcia P. ;
Georgakopoulos, Nikitas ;
Koo, Bon-Kyoung ;
Dietmann, Sabine ;
Davies, Susan E. ;
Praseedom, Raaj K. ;
Lieshout, Ruby ;
IJzermans, Jan N. M. ;
Wigmore, Stephen J. ;
Saeb-Parsy, Kourosh ;
Garnett, Mathew J. ;
van der Laan, Luc J. W. ;
Huch, Meritxell .
NATURE MEDICINE, 2017, 23 (12) :1424-+
[8]   Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing [J].
Buckner, Michelle M. C. ;
Ciusa, Maria Laura ;
Piddock, Laura J. V. .
FEMS MICROBIOLOGY REVIEWS, 2018, 42 (06) :781-804
[9]   Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages [J].
Chavez-Galan, Leslie ;
Olleros, Maria L. ;
Vesin, Dominique ;
Garcia, Irene .
FRONTIERS IN IMMUNOLOGY, 2015, 6
[10]   Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein [J].
Chen, Yulei ;
Zhang, Siyuan ;
Wang, Qizhi ;
Zhang, Xiaobo .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2017, 10 :1-13